SYNTHESIS OF 2-AMINO-2-DEOXY- $\beta-\mathrm{D}-\mathrm{GALACTOPYRANOSYL-}$ (1 $\rightarrow 4$)-2-AMINO-2-DEOXY- β-D-GALACTOPYRANOSIDES: USING VARIOUS 2-DEOXY-2-PHTHALIMIDO-D-GALACTOPYRANOSYL DONORS AND ACCEPTORS

Jan Veselý ${ }^{1 a}$, Miroslav Ledvina ${ }^{1 b, *}$, Jindřich Jindřich ${ }^{2 a}$, Tomáš Trnka ${ }^{3 a}$ and David ŠAMAN ${ }^{2 b}$
${ }^{a}$ Department of Organic Chemistry, Charles University, Albertov 2030, 12840 Prague 2, Czech Republic; e-mail: ${ }^{1}$ jxvesely@natur.cuni.cz, ${ }^{2}$ jindrich@natur.cuni.cz, ${ }^{3}$ trnka@natur.cuni.cz
${ }^{b}$ Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic; e-mail: ${ }^{1}$ ledvina@uochb.cas.cz, ${ }^{2}$ saman@uochb.cas.cz

Received June 2, 2004
Accepted July 25, 2004

Dedicated with due respect to Professor Miloslav Černy on the occasion of his 75th birthday in recognition of his outstanding contributions to carbohydrate chemistry.

A systematic study is presented of the efficiency of the most common glycosylation methods using standard 2-deoxy-2-phthalimidogalactopyranosyl donors ethyl 4-0-acetyl-3,6-di-0-benzyl-2-deoxy-2-phthalimido-1-thio- $\beta-\mathrm{D}-\mathrm{gal}$ actopyranoside (3a), 4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-D-galactopyranosyl bromide (4), 4-0-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-D-galactopyranosyl fluoride (5b), 0-(4-0-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-D-galactopyranosyl) trichloroacetimidate (7) and ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-galactopyranoside (8), pent-4-enyl 3,6-di-O-benzyland 3-O-allyl-6-O-benzyl-2-deoxy-2-phthalimido- β-D-galactopyranoside (10a) and (10b) and pent-4-enyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-4-0-(trimethylsilyl)- β-d-galactopyranoside (11) as glycosyl acceptors in the synthesis of 2-amino-2-deoxy- β-D-galactopyranosyl($1 \rightarrow 4$)-2-amino-2-deoxy- β-D-galactopyranosides 12, 16a and 17a. It was found that due to a low reactivity of the axial $\mathrm{OH}(4)$ group of glycosyl acceptors, disaccharides 16b and 17b with $\alpha(1 \rightarrow 4)$ bond were also formed. The unexpected intermolecular migration of ethylsufanyl group from the reducing end of glycosyl acceptor 8 the reducing end of the activated form of glycosyl donor 4 in the glycosylation step to give ethylsulfanyl derivative 3a was proved. For preparation of the glycosyl donors and glycosyl acceptors with galacto configuration an approach based on epimerization of 4-0-mesyl derivatives of appropriate synthons with gluco configuration $\mathbf{2 a}$ and $\mathbf{2 b}$ was employed.
Keywords: Carbohydrates; Oligosaccharides; Aminosugars; D-Galactosamine; Phthalimide; Glycosyl donors; Glycosyl acceptors; Glycosylations; Peptidoglycan; Glycoproteins.

The $\beta(1 \rightarrow 4)$-linked 2-amino-2-deoxy-D-hexopyranose moieties are frequently occurring structural units in various biologically important oligosacch arides and their glycoconjugates, which have multiple biological functions and activities, such as a play a key role in molecular recognition and interactions of the cell-cell, cell-bacteria, and cell-virus types ${ }^{1-3}$. In contrast to the large number of works devoted to the synthesis of oligosaccharides with $\beta(1 \rightarrow 4)$-linked 2-amino-2-deoxy-D-glucopyranose units, the synthesis of analogous oligosaccharides with $\beta(1 \rightarrow 4)$-linked 2-amino-2-deoxy-D-galactopyranose units has received only little attention so far. The $\beta(1 \rightarrow 4)$-linked N-acetylglucosamine moieties form e.g. an important structural polysaccharide chitin ${ }^{4}$, glycan part of peptidoglycan of bacterial cell walls ${ }^{5,6}$ as well as the reducing end of glycan residues of N -glycoproteins ${ }^{3}$. A systematic study devoted to the use of the most common glycosylation methods for the formation of 1,2-trans-glycosidic bond in the synthesis of oligosaccharides with $\beta(1 \rightarrow 4)$-linked 2-amino-2-deoxy-D-glucopyranose units was reported by Paulsen et al. ${ }^{7}$ The $\beta(1 \rightarrow 4)$-linked N-acetylgalactosamine to 3-0-sial osyl- β-D-galactopyranoside unit constitutes a core unit of gangliosides ${ }^{8,9}$. Due to the problem of formation of $\beta(1 \rightarrow 4)$ glycosidic bond between two D-galactosamine units only one article related to this topic describing synthesis of ganglioside lactams (i.e., stable analogs of ganglioside lactones) was published. This synthesis is based on the glycosylation of 2-amino-2-deoxy-3-0-(sialosyl-1',2'-lactam)- β-D-gal actopyranoside subunit or 2-azido-2-deoxy-3-0-sialosyl- β-d-galactopyranoside subunit as glycosyl acceptor in position $\mathrm{OH}(4)$ with peracetylated 2-deoxy-2-phthalimido-D-galactopyranosyl bromide as glycosyl donor ${ }^{10}$. Oligosaccharides consisting of $\beta(1 \rightarrow 4)$-linked 2-amino-2-deoxygalactopyranose units are a group of compounds having a significant potential from both the synthetic and biological points of view. The 2-amino-2-deoxy- β-D-galactopyranose units have equatorially oriented glycosidic bond and axially oriented C(4)-O bond (i.e., inverted configuration at both linkage centers in comparison to the α-D-glucopyranose units, forming cyclodextrin molecules) and so they satisfy the basic criteria for cyclization ${ }^{11}$. Oligosaccharides consisting of $\beta(1 \rightarrow 4)$-linked 2-acetamido-2-deoxy-D-galactopyranose units also seem to be potential mimics of natural ligands for activated receptor of NK (natural killer) cells, taking into account the fact that the binding activity of N -acetyl-D-gal actosamine is higher than N -acetyl-D-glucosamine and in the case of chitooligomers this activity increases with elongation of the saccharide chain ${ }^{12}$. The above mentioned facts motivated us to focus our attention on the problem of synthesis of oligosaccharides consisting $\beta(1 \rightarrow 4)$-linked 2-acetamido-2-deoxy-D-galactopyranose units.

RESULTS AND DISCUSSIONS

In the synthesis of an oligosaccharide consisting from $\beta(1 \rightarrow 4)$-linked 2-amino-2-deoxy-D-galactopyranose units we were confronted with the problem of stereoselective formation of 1,2-trans-glycosidic bond between glycosyl donor and glycosyl acceptor bearing a free axially oriented OH group in position 4. A large number of procedures for the synthesis of 1,2-trans-di- and oligosaccharides are described. For the 1,2-trans-glycosidic linking of 2-amino-2-deoxyhexopyranoside residue, the Koenigs-Knorr, oxazoline and phthalimide methods are most often used ${ }^{3,13,14}$. The phthalimide method is the most preferred, because 2-deoxy-2-phthalimidohexopyranoses with halogen, trichloroacetimidate or alkylsulfanyl group at C-1 seem to be the most efficient donors and show the highest stereoselectivity ${ }^{3,7}$. The axially oriented $\mathrm{OH}(4)$ group on the galactopyranose skeleton is in general found to be the least reactive ${ }^{15}$. Thus, we were been prompted to make a systematic comparative investigation of the most widely used glycosylation methods using the synthesis of model disaccharides.

For the preparation of appropriate glycosyl donors and acceptors of galacto configuration, the approach based on the inversion of configuration at C-4 of the corresponding synthons with gluco configuration ${ }^{16-18}$ was applied (Scheme 1). We used the mesyl group as a leaving group and sodium acetate as a nucleophile, instead of a combination of trifluoromethanesulfonyl group with tetrabutylammonium or cesium acetate ${ }^{16-18}$. The more stable 4-O-mesyl derivatives $\mathbf{2 a}$ and $\mathbf{2 b}$ (in contrast to analogical 4-0trifluoromethanesulfonyl derivatives) can be isolated and are useful synthons for reactions with other nucleophiles, which give the corresponding saccharide units with galacto configuration. Ethyl 3,6-di-O-benzyl-2-deoxy-4-0-mesyl-2-phthalimido-1-thio- β-D-glucopyranoside (2a) and ethyl 3-0-allyl-6-0-benzyl-2-deoxy-4-0-mesyl-2-phthalimido-1-thio- β-D-glucopyranoside (2b) were obtained by the reaction of either ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-D-glucopyranoside ${ }^{19-21}$ (1a), or ethyl

1a, $R=B n$
1b, R=All

2a, $R=B n$
2b, R=All

3a, $R=B n$
3b, $R=A l l$
a) MsCl , pyridine; b) NaOAc , DMSO

Ms = mesyl; Pht = phthaloyl
Scheme 1

3-0-allyl-6-0-benzyl-2-deoxy-2-phthalimido-1-thio- β-D-glucopyranoside ${ }^{18,20}$ (1b) with methanesufonyl chloride in pyridine. Mesylates $\mathbf{2 a}$ and $\mathbf{2 b}$ upon treatment with anhydrous sodium acetate in dry dimethyl sulfoxide at $130^{\circ} \mathrm{C}$, afforded the key compounds ethyl 4-0-acetyl-3,6-di-0-benzyl-2-deoxy-2-phthalimido-1-thio- $\beta-\mathrm{D}-\mathrm{galactopyranoside} \mathrm{(3a)} \mathrm{and} \mathrm{ethyl} \mathrm{4-0-acetyl-3-0-}$ allyl-6-0-benzyl-2-deoxy-2-phthalimido-1-thio- β-D-galactopyranoside (3b), respectively, in very good yields.

The attractive feature of thioglycosides in oligosaccharide synthesis is that they can be utilized directly as glycosyl donors by activation via sulfonium ion or readily converted into other glycosyl donors used in most common glycosylation methods ${ }^{22}$ (i.e., glycosyl bromides, fluorides ${ }^{23}$, glycosyl trichloroacetimidates ${ }^{24}$ and pent-4-enyl (Pent) glycosides). The β-anomer of glycosyl bromide 4 was obtained by the reaction of ethyl thioglycoside 3a with bromine in dichloromethane (Scheme 2). The reaction of ethyl thioglycoside 3a with N-bromosuccinimide (NBS) and diethylaminosulfur trifluoride (DAST) in dichloromethane afforded a mixture of α and β-glycosyl fluorides $\mathbf{5 a}$ and $\mathbf{5 b}$, in the 1:15 ratio, which was separated by chromatography on a silica gel column. The β-anomer of trichloroacetimidate $\mathbf{7}$ was prepared from ethyl thioglycoside 3a by splitting off the ethylsulfanyl group with N -iodosuccinimide (NIS) in a water-acetone mixture, to yield 6, which was then converted to $\mathbf{7}$ by using a modified literature ${ }^{25}$ procedure treatment with trichloroacetonitrile in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in toluene. The silver perchlorate promoted reaction of glycosyl bromide 4 with pent-4-en-1-ol in dichloromethane afforded pent-4-enyl glycoside 9a. The pent-4-enyl glycoside 9b was prepared directly from ethyl thioglycoside $\mathbf{3 b}$ by methyl triflatepromoted condenzation with pent-4-en-1-ol in dichloromethane. Ethyl thioglycoside 8, pent-4-enyl glycosides 10a and 10b and 4-0-trimethylsilyl derivative $\mathbf{1 1}$ were chosen as glycosyl acceptors for this comparative study. Compound 11 represents glycosyl acceptor suited for glycosylation with glycosyl fluorides and silicon-based catalysis ${ }^{26}$. Compounds 8, 10a and 10b were prepared by Zemplén deacetylation from 4-0-acetates 3a, 9a and 9b respectively. Silyl derivative $\mathbf{1 1}$ was obtained by reaction of compound 10a with trimethylsilyl chloride and hexamethyldisilazane in a mixture of dichoromethane and pyridine.

The results of the presented comparative investigation of the most widely used glycosylation methods using above specified glycosyl donors 3a, 4, 5b and 7, and glycosyl acceptors 8, 10a, 10b and $\mathbf{1 1}$ in the synthesis of model disaccharides containing ($1 \rightarrow 4$)-linked 2-amino-2-deoxygalactopyranose units are summarized in Table I. The silver triflate promoted glycosylation

a) $\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; b) NBS, DAST in $\mathrm{CH}_{2} \mathrm{Cl}_{2},-35^{\circ} \mathrm{C}$; c) $\mathrm{NIS}, \mathrm{H}_{2} \mathrm{O}$ and acetone; d) $\mathrm{CCl}_{3} \mathrm{CN}$ and DBU in toluene, $0^{\circ} \mathrm{C}$ and then r.t.; e) MeONa in MeOH ; f) pent-4-en-1-ol and MeOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$;
g) pent-4-en-1-ol and AgClO_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; h) TMSCl and HMDS in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pyridine

Scheme 2
of ethyl thioglycoside $\mathbf{8}$ with glycosyl bromide $\mathbf{4}$ in dichloromethane at $-45^{\circ} \mathrm{C}$ in the presence of base gave the expected disaccharide $\mathbf{1 2}$ in a very low yield and ethyl thioglycoside 3a was obtained as a major product (Scheme 3). The base, in the case of little reactive glycosyl acceptors acts as a glyco-

a) $\mathrm{AgOTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-45^{\circ} \mathrm{C}$; b) $\mathrm{AgClO}_{4}, \mathrm{AgCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.

Scheme 3
sylation inhibitor ${ }^{27,28}$. Application of the glycosidation procedure using silver perchlorate in the presence of silver carbonate ${ }^{9}$, which acts as a scavenger of hydrogen bromide, did not lead to significant increase in the production of target compound 12 and ethyl glycoside $\mathbf{3 a}$ was still a major product. The formation of unexpected ethyl thioglycoside 3a can be interpreted as a result of low reactivity of axially oriented $\mathrm{OH}(4)$ group of glycosyl acceptor (Scheme 4). Due to this fact the activated form of glycosyl donor attacks mainly sulfur at the reducing end of glycosyl acceptor to give sulfonium ion \mathbf{A}. The ion decomposes to form ethyl thioglycoside 3a and carbocation B, which is stabilized by elimination to form glycal C. An analogous

+

Scheme 4
coupling of the corresponding synthons with gluco configuration followed the expected course, to afford disaccharide 14 in a very good yield (Scheme 5). The problem of intermolecular migration of ethylsulfanyl group was solved by using glycosyl acceptor having pent-4-enyl group at the reducing end.

13

1a

14
a) $\mathrm{AgOTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-45^{\circ} \mathrm{C}$

Scheme 5

Coupling of glycosyl bromide 4 with pent-4-enyl glycoside 10a (Scheme 6) promoted with silver perchlorate in the presence of silver carbonate gave a mixture of $\beta(1 \rightarrow 4)$ - and $\alpha(1 \rightarrow 4)$-linked disaccharides 16a and 16b, respectively, in the 2.7:1 ratio, in a total yield of 78%. The use of ethyl thioglycoside 3a as glycosyl donor activated with methyl triflate, by using the procedure as reported in the literature ${ }^{20}$, led to an increase in the yield of $\alpha(1 \rightarrow 4)$-linked disaccharide 16b, but the overall yield was low. The attempt

3a, $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{X}=\mathrm{SEt}$
4, $R^{1}=B n, X=B r$
5b, $R^{1}=B n, X=F$
7, $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{X}=\mathrm{OC}(\mathrm{NH}) \mathrm{CCl}_{3}$

16a, $R^{1}=R^{2}=B n$
17a, $R^{1}=B n, R^{2}=A l l$

10a, $\mathrm{R}^{2}=\mathrm{Bn}, \mathrm{R}^{3}=\mathrm{H}$
10b, $R^{2}=A l l, R^{3}=H$
11, $R^{2}=B n, R^{3}=T M S$

16b, $R^{1}=R^{2}=B n$
17b, $R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{All}$

Scheme 6
to couple β-glycosyl fluoride 5b with pentenyl glycoside 10a by using titanium tetrafluoride as glycosyl promotor ${ }^{29}$ afforded, beside unreacted starting compounds, 24% of disaccharide 16a, 17\% of disaccharide 16b and 15% of α-glycosyl fluoride 5a. The same coupling carried out with the use of metallocene $\left(\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}\right)$ as a catalyst ${ }^{30,31}$ gave, in addition to unreacted starting compounds, 36% of disaccharide 16a and 14\% of disaccharide 16b. Glycosylation using glycosyl fluorides as glycosyl donors and silicon-based catalysis ${ }^{26}$, which employs the eminent affinity of silicon to fluorine, was unsuccessful. The trimethylsilyl triflate promoted reaction of $\mathbf{5 b}$ with 10a yielded a complex mixture from which the target disaccharide 16a was isolated in a very low yield. Coupling of glycosyl trichloroacetimidate 7 with 10a promoted with boron trifluoride etherate ${ }^{7}$ afforded, in addition to unreacted glycosyl acceptor 10a, 30\% of disaccharide 16a and 11\% of disaccharide 16b. A significant increase in stereoselectivity and efficiency of this glycosylation, i.e., formation of
$\beta(1 \rightarrow 4)$ - and $\alpha(1 \rightarrow 4)$-linked disaccharides 16a and 16b in the ratio 5:1 and 60% overall yield, was achieved by using trimethylsilyl triflate as a stronger Lewis acid. The replacement of benzyl protecting group in position $\mathrm{OH}(4)$ with less bulky allyl group did not have any positive effect. Silver perchlorate in the presence of silver carbonate promoted coupling of glycosyl bromide 4 with pentenyl glycoside 10b gave, in addition to unreacted glycosyl acceptor 10b, 17\% of disaccharide 17a and 11\% of disaccharide $\mathbf{1 7 b}$.

Summarizing the results (Table I) revealed that the stereoselectivity and efficiency of glycosylation of D-galactosamine in comparison with Dglucosamine was lower, due to the low reactivity of axially oriented $\mathrm{OH}(4)$ group in a galactopyranose ring. The maximum overall yields of $\beta(1 \rightarrow 4)$ and $\alpha(1 \rightarrow 4)$-linked disaccharides were obtained by silver perchlorate in the presence silver carbonate promoted glycosylation with glycosyl bromide. Quite a good stereoselectivity in favor of $\beta(1 \rightarrow 4)$-linked disaccharides was achieved by Schmidt's trichloroacetimidate method.

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected. Specific rotations were measured on a Perkin-Elmer 141 polarimeter at $22{ }^{\circ} \mathrm{C}$ and are given in deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Elemental analyses were performed using a Perkin-Elmer 2400 II instrument. NMR spectra were recorded on a Bruker Avance 500 spectrometer in the FT mode at $500.1 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and at $125.8 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ in CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, using tetramethylsilane as internal standard for ${ }^{1} \mathrm{H}$ NMR spectra and $\mathrm{CDCl}_{3}(\delta 77.0)$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}(\delta 39.7)$ signals as standards for ${ }^{13} \mathrm{C}$ NMR spectra. For unambiguous assignment of signals in ${ }^{13} \mathrm{C}$ NMR spectra, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-heterocorrelated 2D NMR spectra were measured by gHSQC and gHMBC techniques using the standard pulse sequences delivered by the producer of the spectrometer. The following typical parameters were used: spectral width in both f_{1} and f_{2} dimensions 5000 and 17000 Hz , respectively, number of scans 16, number of increments in f_{1} dimension 256, recycle delay 1 s , acquisition time $0.2 \mathrm{~s}, 90^{\circ}$ pulse for ${ }^{1} \mathrm{H}$ was $12.5 \mu \mathrm{~s}$, data matrix for processing $2048 \times$ 2048 datapoints. For processing, shifted sinebell weighting function was used. Chemical shifts are given in ppm (δ-scale) and coupling constants (J) in Hz. Positive-ion FAB mass spectra were measured on a BeqG-geometry mass spectrometer ZAB-EQ (VG Analytical, Manchester, U.K.) using an M-Scan FAB gun (Xe, energy 8 keV) at an accelerating voltage of 8 kV . Samples were dissolved in chloroform or methanol, and a mixture of glycerol and thioglycerol or dimethyl sulfoxide was used as matrix. Thin-layer chromatography (TLC) was performed on DC-Alufolien Kieselgel $60 \mathrm{~F}_{254}$ (Merck, Darmstadt, Germany) or Silufol UV 254 (Kavalier, Votice, Czech Republic) silica gel sheets. Preparative chromatography was performed on a silica gel column, particle size 40-60 $\mu \mathrm{m}$ (Fluka, Neu-Ulm, Switzerland). Analytical RP HPLC was performed using a Waters instrument (PDA detector, software Milennium 32; Milford, MA, U.S.A.) equipped with a Nova-Pak C18 column ($150 \times 3.9 \mathrm{~mm}$), particle size $4 \mu \mathrm{~m}$. Preparative RP HPLC was performed on a column ($250 \times 25 \mathrm{~mm}$) filled with LiChrosorb RP-18, particle size $5 \mu \mathrm{~m}$ (Merck, Darmstadt, Germany). Solvents were evapo-
Table I
Comparison of the efficiency of a series of glycosyl donors and acceptors in standard glycosylation processes

Glycosyl donor	Glycosyl acceptor	Glycosyl promotor	Solvent	Temp., ${ }^{\circ} \mathrm{C}$	Time	Products (anomeric configuration), \%						
						$\begin{aligned} & 12 \\ & (\beta) \end{aligned}$	14 (β)	16a (β)	$\underset{(\alpha)}{\mathbf{1 6 b}}$	17a (β)	$\underset{(\alpha)}{\mathbf{1 7 b}}$	3 a
4	8	AgOtf ${ }^{\text {a }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-45/-20	1.5 h	5						50
4	8	$\mathrm{AgClO}_{4} / \mathrm{AgCO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	8 h	17						55
13	1a	AgOtf ${ }^{\text {a }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-45	1.5 h		61					
4	10a	$\mathrm{AgClO}_{4} / \mathrm{AgCO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-15/r.t.	11 h			57	21			
3 a	10a	MeOtf ${ }^{\text {a }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	48 h			42	21			
5b	10a	TiF_{4}	$\mathrm{Et}_{2} \mathrm{O}$	0/r.t.	18 h			24	17			
5b	10a	$\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AgClO}_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20/r.t.	2 h			36	14			
5b	11	TMSOTf ${ }^{\text {a }}$	$\mathrm{CH}_{3} \mathrm{CN}$	-45/r.t.	3 d			11				
7	10a	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	3 d			30	11			
7	10a	TMSOTf ${ }^{\text {a }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-45/r.t.	3 d			49	11			
4	10b	$\mathrm{AgClO}_{4} / \mathrm{AgCO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	8 h					17	11	

[^0]rated on a rotary vacuum evaporator at $40^{\circ} \mathrm{C}$. Analytical samples were dried at 6.5 Pa and $25^{\circ} \mathrm{C}$ for 8 h .

Ethyl 3,6-Di-O-benzyl-2-deoxy-4-O-mesyl-2-phthalimido-1-thio- β-D-
glucopyranoside (2a) and Ethyl 3-0-Allyl-6-0-benzyl-2-deoxy-4-0-mesyl-
2-phthalimido-1-thio- β-d-glucopyranoside (2b)
Ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-glucopyranoside ${ }^{19-21}$ (1a; 53.4 g , 100 mmol) or ethyl 3-0-allyl-6-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-glucopyranos ide ${ }^{18,20}$ ($\mathbf{1 b} ; 48.4 \mathrm{~g}, 100 \mathrm{mmol}$) was dried at room temperature and 20 Pa for 6 h and then dissolved in pyridine (600 ml). Mesyl chloride ($50 \mathrm{ml}, 646 \mathrm{mmol}$) was slowly added under stirring and the mixture was stirred at room temperature for 24 h . Progress of the reaction was monitored by TLC in toluene-ethyl acetate ($5: 1$). Toluene (3000 ml) was added and the mixture was washed with cool 1 m aqueous $\mathrm{HCl}(3 \times 800 \mathrm{ml})$, water $(3 \times 600 \mathrm{ml})$, dried over anhydrous magnesium sulfate and evaporated in vacuo.

Compound 2a: Yield 58.7 g (96%) of a solid $\mathbf{2 a}$, chromatographically homogenous in the solvent system mentioned above. An analytical sample was prepared by crystallization from toluene-petroleum ether; m.p. $60-62{ }^{\circ} \mathrm{C},[\alpha]_{D}+76$ (c 0.9 , chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{~S}_{2}$ calculated: relative molecular mass 611.7, monoisotopic mass 611.2. ESI MS, m/z: $634.0[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{~S}_{2}$ (611.7) calculated: 60.87% C, 5.44% H, 2.29% N, 10.48% S; found: 60.96% C, 5.56% H, 2.21% N, 10.31% S.

Compound 2b: Yield 53.9 g (96\%) of a syrupy compound $\mathbf{2 b}$, chromatographically homogenous in the solvent system mentioned above. An analytical sample was prepared by chromatography on a silica gel column in toluene-ethyl acetate (9:1), syrup; $[\alpha]_{D}+44$ (c 0.5, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{~S}_{2}$ calculated: relative molecular mass 561.7, monoisotopic mass 561.2. ESI MS, m/z: 584.1 [M + Na] ${ }^{+}$, 600.1 $\left[\mathrm{M}+\mathrm{K}^{+}\right.$. For $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{~S}_{2}$ (561.7) calculated: $57.74 \% \mathrm{C}, 5.56 \% \mathrm{H}, 2.49 \% \mathrm{~N}, 11.42 \% \mathrm{~S}$; found: $57.98 \% \mathrm{C}, 5.71 \% \mathrm{H}, 2.58 \% \mathrm{~N}, 11.14 \% \mathrm{~S}$.

Ethyl 4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-dgalactopyranoside (3a) and Ethyl 4-0-Acetyl-3-0-allyl-6-0-benzyl-
2-deoxy-2-phthalimido-1-thio- β-d-galactopyranoside (3b)
Compound $\mathbf{2 a}$ ($15.3 \mathrm{~g}, 25 \mathrm{mmol}$) or compound $\mathbf{2 b}$ ($14.0 \mathrm{~g}, 25 \mathrm{mmol}$) and freshly melted sodium acetate ($131 \mathrm{~g}, 1600 \mathrm{mmol}$) were dried in a flask equipped with a reflux condenser at room temperature and 20 Pa for 4 h and then the apparatus was flushed with argon ($2 \times$). Dry dimethyl sulfoxide (1400 ml) was added and the reaction mixture was stirred under argon atmosphere at $130{ }^{\circ} \mathrm{C}$ for 24 h . Progress of the reaction was monitored on TLC in toluene-ethyl acetate (5:1). The solvent was evaporated in vacuo at $90^{\circ} \mathrm{C}$ and the residue was partitioned between toluene (1000 ml) and water (700 ml). Organic layer was separated, washed with water ($2 \times 700 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated. The residue was chromatographed on a silica gel column (350 g) in toluene-ethyl acetate (7:1).

Compound 3a: Yield 10.4 g (72\%) of a syrupy compound 3a; $[\alpha]_{D}+65$ (c 0.6, chloroform), lit. ${ }^{16}$ gives $[\alpha]_{D}+64$ (c 1.0, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{~S}$ calculated: relative molecular mass 575.7, monoisotopic mass 575.2. FAB MS, m/z: $514[\mathrm{M}-\mathrm{EtSH}+\mathrm{H}]^{+}$. ESI MS, m/z: $598.3\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$, $614.1[\mathrm{M}+\mathrm{K}]^{+}$. For $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{~S}$ (575.7) calculated: $66.76 \% \mathrm{C}, 5.78 \% \mathrm{H}, 2.43 \% \mathrm{~N}, 5.57 \% \mathrm{~S} ;$ found: $67.04 \% \mathrm{C}, 5.89 \% \mathrm{H}$, 2.53\% N, 5.49\% S.
Table II
${ }^{1}$ H NMR parameters of compounds $\mathbf{2 a}-\mathbf{8}^{\text {a }}$

Parameter	$\mathbf{2 a}$	$\mathbf{2 b}$	$\mathbf{3 a}$	$\mathbf{3 b}$	$\mathbf{4}^{\mathbf{b}}$	$\mathbf{4}^{\text {c }}$	$\mathbf{5 a}$	$\mathbf{5 b}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\delta(\mathrm{H}-1)$	5.25 d	5.29 d	5.29 d	5.34 d	6.69 d	6.22 d	5.72 dd	5.85 dd	5.33 t	6.43 d	5.23 d
$\delta(\mathrm{H}-2)$	4.35 t	4.35 t	4.45 t	4.49 t	4.69 ddd	4.68 ddd	4.66 ddd	4.49 ddd	4.32 dd	4.65 dd	4.56 t
$\delta(\mathrm{H}-3)$	4.56 dd	4.43 dd	4.31 dd	4.37 dd	5.32 dd	4.24 dd	5.28 dd	4.34 dd	4.41 dd	4.45 dd	4.30 dd
$\delta(\mathrm{H}-4)$	4.75 dd	4.69 dd	5.71 dd	5.61 dd	5.89 dd	5.72 ddd	5.85 dd	5.67 dd	5.66 dd	5.74 bd	4.22 ddd
$\delta(\mathrm{H}-5)$	3.84 ddd	3.82 dd	3.96 ddd	3.96 ddd	4.53 dddd	4.01 ddd	4.47 bt	4.02 bt	3.97 dt	4.14 ddd	3.81 tt
$\delta(\mathrm{H}-6 \mathrm{a})$	3.76 dd	3.74 dd	3.55 dd	3.53 dd	3.58 dd	3.56 dd	3.55 dd	3.61 dd	3.56 dd	3.60 dd	3.78 dd
$\delta(\mathrm{H}-6 \mathrm{~b})$	3.90 dd	3.89 dd	3.63 dd	3.62 dd	3.62 dd	3.65 dd	3.62 dd	3.68 dd	3.64 dd	3.68 dd	3.85 dd
J(1,2)	10.5	10.4	10.5	10.6	3.7	9.7	2.7	8.0	8.2	8.9	10.5
J(2,3)	10.2	10.2	10.6	10.6	11.6	10.7	11.6	11.1	11.0	11.0	10.4
J(3,4)	9.0	8.9	3.4	3.2	3.1	3.5	3.1	3.4	3.3	3.2	3.3
J(4,5)	10.0	9.9	1.2	1.2	1.3	1.3	0.9	1.2	1.2	1.2	1.0
J(5,6a)	5.3	5.4	7.2	7.0	6.8	7.1	6.7	6.9	6.4	7.2	5.0
J(5,6b)	2.3	2.3	5.8	5.9	6.0	5.8	6.0	5.9	6.2	5.7	5.2
J(6a,6b)	11.1	11.0	9.4	9.5	9.7	9.4	9.6	9.5	9.5	9.5	8.0

Compound 3b: Yield 8.5 g (65\%) of a syrupy compound 3b; $[\alpha]_{\mathrm{D}}+33$ (c 0.3, chloroform); lit. ${ }^{18}$ gives $[\alpha]_{D}+24$ (c 0.6 , chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{~S}$ calculated: relative molecular mass 525.6, monoisotopic mass 525.2. FAB MS, $\mathrm{m} / \mathrm{z}: 526[\mathrm{M}+\mathrm{H}]^{+}, 548[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{~S}(525.6)$ calculated: $63.98 \% \mathrm{C}, 5.94 \% \mathrm{H}$, 2.66% N, 6.10% S; found: 64.17% C, 6.07% H, 2.72% N, 6.21% S.

4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- α / β-D-gal actopyranosyl Bromide (4)
Compound 3 a ($576 \mathrm{mg}, 1 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 10 \mathrm{ml}$) and then at room temperature and 20 Pa for 4 h . The apparatus was flushed with argon $(2 x)$ and dry dichloromethane (2 ml) was added through the septum. After dissolution, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and 1 m solution of bromine in dry dichloromethane ($1.1 \mathrm{ml}, 1.1 \mathrm{mmol}$) was added through the septum. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . In the same apparatus the solvents were evaporated in vacuo (water pump) with exclusion of moisture. The residue was co-evaporated with toluene $(3 \times 10 \mathrm{ml})$ at 20 Pa , and lyophilized from benzene. Yield 590 mg (98\%) of α / β-anomeric mixture (3:4) of compound 4; $[\alpha]_{D}+77$ (c 0.1, chloroform). The ratio of anomers was determined by ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BrNO}_{7}$ calculated: relative molecular mass 594.5, monoisotopic mass 593.1. FAB MS, m/z: 594 [M + $\mathrm{H}]^{+}$. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BrNO}_{7}$ (594.5) calculated: $60.61 \% \mathrm{C}, 4.75 \% \mathrm{H}, 13.44 \% \mathrm{Br}, 2.36 \% \mathrm{~N}$; found: $66.89 \% \mathrm{C}, 4.91 \% \mathrm{H}, 13.32 \% \mathrm{Br}, 2.38 \% \mathrm{~N}$.

4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- α-D-galactopyranosyl Fluoride (5a) and 4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-d-galactopyranosyl Fluoride (5b)

Compound 3 a ($1.73 \mathrm{~g}, 3.0 \mathrm{mmol}$) was dried at room temperature and 20 Pa for 4 h , then N -bromosuccinimide ($1.07 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added and drying was continued in an apparatus equipped with a septum for another 1 h . The apparatus was flushed with argon ($2 \times$) and dry dichloromethane (70 ml) was added trough the septum. After dissolution, the mixture was cooled to $-45{ }^{\circ} \mathrm{C}$ and (diethylamino)sulfur trifluoride (DAST) ($1 \mathrm{ml}, 5.1 \mathrm{mmol}$) was added under stirring through the septum and the stirring was continued at $-35{ }^{\circ} \mathrm{C}$ for 6 h . Saturated aqueous sodium hydrogencarbonate (30 ml) was added and the mixture was stirred at room temperature for another 1 h . The organic layer was separated, washed with water ($3 \times 15 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. Chromatography of the residue on silica gel column (80 g) in toluene-ethyl acetate (20:1) afforded 72 mg (5\%) of α-anomer 5a and 1.1 g (69\%) of β-anomer $\mathbf{5 b}$.

Compound 5a: Syrup; $[\alpha]_{D}+96$ (c 0.2, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{FNO}_{7}$ calculated: relative molecular mass 533.5, monoisotopic mass 533.2. ESI MS, m/z: $514\left[\mathrm{M}-\mathrm{F}^{+}, 556[\mathrm{M}+\mathrm{Na}]^{+}\right.$. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{FNO}_{7}$ (533.5) calculated: $67.53 \% \mathrm{C}$, 5.29% H, 3.56\% F, 2.63\% N; found: 67.26\% C, 5.55% H, 3.36\% F, 2.48\% N.

Compound 5b: Solid; $[\alpha]_{D}+65$ (c 0.1 , chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{FNO}_{7}$ calculated: relative molecular mass 533.5, monoisotopic mass 533.2. ESI MS, m/z: $514[\mathrm{M}-\mathrm{F}]^{+}, 556[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{FNO}_{7}$ (533.5) calculated: $67.53 \% \mathrm{C}$, 5.29\% H, 3.56\% F, 2.63\% N; found: 67.48\% C, 5.43\% H, 3.39\% F, 2.54\% N.

4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-D-galactopyranose (6)
Compound 3 a ($1.04 \mathrm{~g}, 1.8 \mathrm{mmol}$) and N -iodosuccinimide ($930 \mathrm{mg}, 4.1 \mathrm{mmol}$) were dissolved under stirring in a mixture acetone-water ($4: 1,30 \mathrm{ml}$) at room temperature and stirring was continued for 12 h . The solvents were evaporated in vacuo and the residue was co-distilled with toluene ($3 \times 30 \mathrm{ml}$) and then dissolved in chloroform (30 ml). The solution was washed with 30% aqueous sodium thiosulfate (3 ml), water ($2 \times 3 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo, giving 950 mg (98\%) of compound 6; $[\alpha]_{D}+66$ (c 0.3 , chloroform). Compound 6 without specification of configuration on the anomeric centre is described in the literature ${ }^{25}$ as a product of deallylation product of appropriate allyl glycoside; $[\alpha]_{D}+83$ (c 0.6 , chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{8}$ calculated: relative molecular mass 531.5, monoisotopic mass 531.5. FAB MS, m/z: $514\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 554[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{8}$ (531.5) calculated: $67.79 \% \mathrm{C}$, $5.50 \% \mathrm{H}, 2.64 \% \mathrm{~N}$; found: $67.61 \% \mathrm{C}, 5.61 \% \mathrm{H}, 2.49 \% \mathrm{~N}$.

O-(4-O-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-d-galactopyranosyl)

Trichloroacetimidate (7)
Compound 6 ($870 \mathrm{mg}, 1.6 \mathrm{mmol}$) was dried in an apparatus equipped with a septum at room temperature and 20 Pa for 4 h . The apparatus was flushed with argon ($2 x$) and dry toluene (23 ml) was added through the septum. After dissolution, the mixture was cooled to $0^{\circ} \mathrm{C}$, and trichloroacetonitrile ($2 \mathrm{ml}, 9.6 \mathrm{mmol}$) and 1 m solution of DBU in toluene ($320 \mu \mathrm{l}$, 0.32 mmol) were added through the septum. The stirring was then continued at room temperature for 24 h . Progress of the reaction was monitored on TLC in toluene-ethyl acetate (1:1). A saturated aqueous ammonium chloride (2 ml) was added. Organic layer was separated, washed with water ($2 \times 10 \mathrm{ml}$), then dried over anhydrous magnesium sulfate and evaporated in vacuo. Chromatography of the residue on a silica gel column (20 g) in toluene-ethyl acetate (20:1) afforded $680 \mathrm{mg}(63 \%)$ of compound 7; $[\alpha]_{D}+63$ (c 0.2, chloroform). Compound $\mathbf{7}$ is described in^{25} as incomplete characterized intermediate. ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{8}$ calculated: relative molecular mass 675.9, monoisotopic mass 674.1. FAB MS, m/z: $514\left[\mathrm{M}-\mathrm{CCl}_{3} \mathrm{CNHO}\right]^{+}, 697[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$. For $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{8}$ (675.9) calculated: $56.86 \% \mathrm{C}, 4.32 \% \mathrm{H}, 15.73 \% \mathrm{Cl}, 4.14 \% \mathrm{~N}$; found: $56.73 \% \mathrm{C}$, $4.45 \% \mathrm{H}, 15.60 \% \mathrm{Cl}, 4.08 \% \mathrm{~N}$.

Ethyl 3,6-Di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-D-galactopyranoside (8)

Compound 3a ($576 \mathrm{mg}, 1 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 5 \mathrm{ml}$) and then at room temperature and 20 Pa for 4 h . The apparatus was flushed with argon ($2 \times$), dry methanol (10 ml) and $1 \mathrm{~m} \mathrm{MeONa}(100 \mu \mathrm{l}$, 0.1 mmol) were added through the septum and then the mixture was stirred at room temperature for 80 h . Progress of the reaction was monitored by TLC in toluene-ethyl acetate (5:1). The mixture was neutralized by addition of Dowex 50 (pyridinium form). The ion exchanger was filtered off, washed with methanol (20 ml) and the filtrate was evaporated in vacuo. Chromatography of the residue on a silica gel column (40 g) in the above mentioned solvent system gave 460 mg (80%) of a syrupy compound 8 , which was crystallized from ethanol to afford $444 \mathrm{mg}(77 \%)$ of compound 8; m.p. $112-113^{\circ} \mathrm{C},[\alpha]_{D}+58$ (c 0.9, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table II, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{~S}$ calculated: relative molecular mass 533.6, monoisotopic mass 533.2. FAB MS, m/z: $472[\mathrm{M}-\mathrm{EtSH}+\mathrm{H}]^{+}, 556[\mathrm{M}+$
$\mathrm{Na}]^{+}$. For $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}(533.6)$ calculated: $67.53 \% \mathrm{C}, 5.85 \% \mathrm{H}, 2.63 \% \mathrm{~N}, 6.00 \% \mathrm{~S} ;$ found: 67.61\% C, $5.88 \% \mathrm{H}, 2.61 \% \mathrm{~N}, 5.97 \% \mathrm{~S}$.

Pent-4-enyl 4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-Dgalactopyranoside (9a)

A mixture of silver perchlorate ($1.4 \mathrm{~g}, 6.7 \mathrm{mmol}$) and molecular sieves $3 \AA(3 \mathrm{~g})$ was dried in an apparatus equipped with a septum at room temperature and 20 Pa for 4 h . The apparatus was flushed with argon ($2 \times$) and dry dichloromethane (30 ml) and pent-4-en-1-ol (2 ml , 19.4 mmol) were added through the septum and the mixture was stirred at room temperature for 1 h . The mixture was cooled to $-40^{\circ} \mathrm{C}$ and a solution of glycosyl bromide 4 , freshly prepared from $3 \mathrm{a}(2.4 \mathrm{~g}, 4 \mathrm{mmol})$ and dry dichloromethane (20 ml), was added through the septum under stirring during 10 min and stirring was continued at $-20^{\circ} \mathrm{C}$ for 12 h . A saturated aqueous sodium hydrogencarbonate (10 ml) was added at $-20^{\circ} \mathrm{C}$ and after warming to room temperature the mixture was diluted with dichloromethane (70 ml) and filtered through a Celite. The filtrate was washed with saturated aqueous sodium hydrogencarbonate $(30 \mathrm{ml})$, water ($3 \times 30 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. Chromatography of the residue on silica gel column (140 g) in toluene-ethyl acetate (25:1) gave $2.2 \mathrm{~g}(90 \%)$ of a syrupy compound 9 a ; $[\alpha]_{D}+39$ (c 0.2, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table III, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{NO}_{8}$ calculated: relative molecular mass 599.7, monoisotopic mass 599.3. FAB MS, m/z: $600.8\left[\mathrm{M}+\mathrm{H}^{+}, 622.8[\mathrm{M}+\mathrm{Na}]^{+}\right.$. For $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{NO}_{8}$ (599.7) calculated: 70.10% C, $6.22 \% \mathrm{H}, 2.34 \% \mathrm{~N}$; found: $70.26 \% \mathrm{C}, 6.34 \% \mathrm{H}, 2.26 \% \mathrm{~N}$.

Pent-4-enyl 4-O-Acetyl-3-O-allyl-6-O-benzyl-2-deoxy-2-phthalimido- β-Dgalactopyranoside (9b)

Compound $3 \mathbf{b}$ ($1.0 \mathrm{~g}, 2.0 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by codistillation with dry benzene ($3 \times 15 \mathrm{ml}$) and then at room temperature and 20 Pa for 6 h . The apparatus was flushed with argon $(2 x)$ and dry dichloromethane (40 ml) was added through the septum. After dissolution, the mixture was cooled to $-30^{\circ} \mathrm{C}$ and methyl triflate $(0.9 \mathrm{ml}, 8.0 \mathrm{mmol})$ was added under stirring through the septum. The temperature was allowed to increase to $0{ }^{\circ} \mathrm{C}$ (during 15 min) and pent-4-en-1-ol ($2 \mathrm{ml}, 19.4 \mathrm{mmol}$) was added through the septum and stirring was then continued at room temperature for 6 h . Progress of the reaction was monitored by TLC in toluene-ethyl acetate (5:1). Pyridine (2 ml) was added and after 1 h stirring at room temperature the mixture was diluted with dichloromethane (30 ml). The solution was washed with saturated aqueous sodium hydrogencarbonate (30 ml), water ($2 \times 30 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. Chromatography of the residue on silica gel column (70 g) in toluene-ethyl acetate ($20: 1$) gave 1.0 g (92%) of a syrupy compound $\mathbf{9 b} ;[\alpha]_{D}+4$ (c 0.4 , chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table III, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{8}$ calculated: relative molecular mass 549.6, monoisotopic mass 549.2. FAB MS, m/z: $600.8[\mathrm{M}+\mathrm{H}]^{+}, 622.8[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{8}(549.6)$ calculated: $67.74 \% \mathrm{C}, 6.42 \% \mathrm{H}, 2.55 \% \mathrm{~N}$; found: $67.68 \% \mathrm{C}, 6.58 \% \mathrm{H}$, 22.49\% N.

Table III
${ }^{1}$ H NMR parameters of compounds $9-11^{\text {a }}$

Parameter	9a	9b	10a	10b	11
$\delta(\mathrm{H}-1)$	5.13 d	5.15 d	5.09 d	5.12 d	5.11 d
$\delta(\mathrm{H}-2)$	4.39 dd	4.42 dd	4.45 dd	4.47 dd	4.57 dd
$\delta(\mathrm{H}-3)$	4.28 dd	4.34 dd	4.26 dd	4.28 dd	4.15 dd
$\delta(\mathrm{H}-4)$	5.67 dd	5.57 dd	4.16 d	4.15 bd	4.26 d
$\delta(\mathrm{H}-5)$	3.92 ddd	3.92 ddd	$3.79-3.81 \mathrm{~m}$	3.79 dd	$3.71-3.76$ m
$\delta(\mathrm{H}-6 \mathrm{a})$	3.59 dd	3.57 dd	$3.76-3.78$ m	3.79 dd	3.64 m
$\delta(\mathrm{H}-6 \mathrm{~b})$	3.64 dd	3.63 dd	$3.87-3.89 \mathrm{~m}$	3.88 dd	$3.71-3.76$ m
$\delta\left(\mathrm{H}-1 \mathrm{a}^{\prime}\right)$	3.39 ddd	3.43 ddd	3.39 dt	3.42 ddd	3.36 ddd
$\delta\left(H-1 b^{\prime}\right)$	3.81 dt	3.84 dt	3.80 dt	3.82 dt	3.79 dt
$\delta\left(\mathrm{H}-2^{\prime}\right)$	$1.40-1.60 \mathrm{~m}$	$1.44-1.62 \mathrm{~m}$	1.40-1.58 m	$1.43-1.60$ m	1.40-1.55 m
$\delta\left(\mathrm{H}-3^{\prime}\right)$	1.75-1.92 m	$1.79-1.93$ m	$1.77-1.92 \mathrm{~m}$	$1.80-1.93$ m	1.74-1.87 m
$\delta\left(\mathrm{H}-4^{\prime}\right)$	5.55 ddt	5.57 ddt	5.56 ddt	5.58 ddt	5.54 ddt
$\delta\left(\mathrm{H}-5 \mathrm{a}^{\prime}\right)$	4.69 ddt	4.75 ddt	4.71 ddt	4.73 dq	4.68 ddt
$\delta\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right)$	4.73 ddt	4.72 ddt	4.74 ddt	4.75 ddt	4.72 ddt
$J(1,2)$	8.5	8.4	8.5	8.5	8.5
$J(2,3)$	11.1	11.2	10.9	11.0	11.1
$J(3,4)$	3.4	3.3	3.3	3.3	2.8
$J(4,5)$	1.2	1.2	b	0.0	0.0
$J(5,6 a)$	7.0	6.8	b	5.8	b
$J(5,6 b)$	5.8	6.0	b	8.2	b
J(6a,6b)	9.5	9.6	b	11.8	b

[^1]Pent-4-enyl 3,6-Di-O-benzyl-2-deoxy-2-phthalimido- β-D-gal actopyranoside (10a) and
Pent-4-enyl 3-0-Allyl-6-O-benzyl-2-deoxy-2-phthalimido- β-D-gal actopyranoside (10b)
Compound 9a ($1.2 \mathrm{~g}, 2.0 \mathrm{mmol}$) or compound $\mathbf{9 b}$ ($1.1 \mathrm{~g}, 2 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 10 \mathrm{ml}$) and then at room temperature and 20 Pa for 6 h . The apparatus was flushed with argon (2 x) and dry methanol $(40 \mathrm{ml})$ and 0.5 m MeONa in methanol (0.5 ml) were added through the septum. The mixture was stirred at room temperature for 7 days: Progress of the reaction was monitored on TLC in toluene-ethyl acetate (5:1). The mixture was neutralized by addition of Dowex 50 (pyridinium form), the ion exchanger was filtered off, washed with methanol (50 ml) and filtrate was evaporated in vacuo. The residue was chromatographed on a silica gel column $(100 \mathrm{~g})$ in toluene-ethyl acetate ($10: 1$)

Compound 10a: Yield 981 mg (88\%) of a syrupy compound 10a; $[\alpha]_{D}+33$ (c 0.6, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table III, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{7}$ calculated: relative molecular mass 557.6, monoisotopic mass 557.2. FAB MS, m/z: 558.2 $[\mathrm{M}+\mathrm{H}]^{+}, 580.2[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{7}$ (557.6) calculated: $71.08 \% \mathrm{C}, 6.33 \% \mathrm{H}, 2.51 \% \mathrm{~N}$; found: $71.19 \% \mathrm{C}, 6.41 \% \mathrm{H}$, 2.43\% N.

Compound 10b: Yield 822 mg (81\%) of a syrupy compound 10b; $[\alpha]_{D}+5$ (c 0.4, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table III, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{7}$ calculated: relative molecular mass 507.6, monoisotopic mass 507.2. FAB MS, m/z: 508.2 $[\mathrm{M}+\mathrm{H}]^{+}, 530.7[\mathrm{M} \mathrm{+} \mathrm{Na]}$. For $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{7}$ (507.6) calculated: $68.62 \% \mathrm{C}, 6.55 \% \mathrm{H}, 2.76 \% \mathrm{~N}$; found: $68.49 \% \mathrm{C}, 6.68 \% \mathrm{H}$, 2.64\% N.

Pent-4-enyl 3,6-Di-O-benzyl-2-deoxy-2-phthalimido-4-0-(trimethylsilyl)- β-Dgalactopyranoside (11)

Compound 10a ($160 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 5 \mathrm{ml}$) and then at room temperature and 20 Pa for 4 h . The apparatus was flushed with argon ($2 x$), and dry dichloromethane (9 ml) and dry pyridine (4.5 ml) were added through the septum. After dissolution, 1,1,1,3,3,3-hexamethyldisilazane ($130 \mu \mathrm{l}, 0.6 \mathrm{mmol}$) and chlorotrimethylsilane ($150 \mu \mathrm{l}, 1.2 \mathrm{mmol}$) were added under stirring through the septum and stirring was continued at room temperature for 48 h . Progress of the reaction was monitored on TLC in toluene-ethyl acetate (5:1). The reaction mixture was evaporated in vacuo and the residue was chromatographed on a silica gel column (12 g) in toluene-ethyl acetate (20:1), to give 160 mg (88%) of a syrupy compound 11; $[\alpha]_{D}+24$ (c 0.02 , chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table III, ${ }^{13} \mathrm{C}$ NMR: see Table V. For $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{7} \mathrm{Si}$ calculated: relative molecular mass 629.8, monoisotopic mass 629.3. ESI MS, $\mathrm{m} / \mathrm{z}: 652[\mathrm{M}+\mathrm{H}]^{+}$. For $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{7} \mathrm{Si}$ (629.8) calculated: $68.65 \% \mathrm{C}, 6.88 \% \mathrm{H}, 2.22 \% \mathrm{~N}$; found: $68.41 \% \mathrm{C}, 7.07 \% \mathrm{H}, 2.11 \% \mathrm{~N}$.

Ethyl 4-O-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-d-galactopyranosyl-
($1 \rightarrow 4$)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-D-gal actopyranoside (12)
Method A. A mixture of compound 8 ($133 \mathrm{mg}, 0.25 \mathrm{mmol}$) and silver trifluoromethanesulfonate ($90 \mathrm{mg}, 0.35 \mathrm{mmol}$) was dried in a flask equipped with a septum at room temperature and 20 Pa for 8 h . The apparatus was flushed with argon $(2 \times)$ and dry dichloromethane $(0.7 \mathrm{ml})$ was added through the septum. After dissolution, the mixture was cooled to $-45{ }^{\circ} \mathrm{C}$, and a solution of glycosyl bromide 4, freshly prepared from 3a ($216 \mathrm{mg}, 0.38 \mathrm{mmol}$) and
dry dichloromethane (0.6 ml), was added under stirring through the septum during 1 h . The mixture was stirred at $-45^{\circ} \mathrm{C}$ for another 1 h and at $-20^{\circ} \mathrm{C}$ for 30 min . Pyridine (0.5 ml) was added at $-20^{\circ} \mathrm{C}$ and after warming to room temperature the mixture was diluted with chloroform (5 ml) and filtered. The filtrate was washed with $0.5 \mathrm{~m} \mathrm{HCl}(3 \times 2 \mathrm{ml})$, saturated aqueous sodium hydrogencarbonate ($3 \times 2 \mathrm{ml}$) and water ($3 \times 2 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was separated by HPLC on silica gel C18 column in solvent system water-methanol (linear gradient $50 \rightarrow 100 \%$) to give 13 mg (5\%) of a syrupy compound $\mathbf{1 2}$ and 72 mg (50%) of a syrupy compoud $\mathbf{3 a}$, which is identical in all respects ($[\alpha]_{D}, \mathrm{MS}$, and NMR spectra) with the authentic compound 3a described above.

Method B: A mixture of compound 8 ($133 \mathrm{mg}, 0.25 \mathrm{mmol}$), silver carbonate (276 mg , 1.0 mmol), silver perchlorate ($62 \mathrm{mg}, 0.3 \mathrm{mmol}$) and molecular sieves $4 \AA(0.8 \mathrm{~g})$ was dried in an apparatus equipped with a septum at room temperature and 20 Pa for 8 h . The apparatus was flushed with argon $(2 x)$ and dry dichloromethane (1.4 ml) was added through the septum. The mixture was stirred at room temperature for 1 h and a solution of glycosyl bromide 4, freshly prepared from 3a ($216 \mathrm{mg}, 0.38 \mathrm{mmol}$) and dry dichloromethane (0.6 ml), was added under stirring through the septum during 3 h . Stirring was continued at room temperature for another 10 h and then pyridine (1 ml) was added. The reaction mixture was worked up by the same procedure as is given in method A to afford 45 mg (17\%) of a syrupy compound $\mathbf{1 2}$ and 38 mg (55\%) of a syrupy compound $\mathbf{3 a}$.

Compound 12: $[\alpha]_{D}+18$ (c 0.1, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table IV, ${ }^{13} \mathrm{C}$ NMR: see Table VI. For $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}$ calculated: relative molecular mass 1047.2, monoisotopic mass 1046.4. FAB MS, m/z: 877.4 [M - (OBn and EtS)] ${ }^{+}, 1048.4[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}, 1069.4\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$. For $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}(1047.2)$ calculated: $68.82 \% \mathrm{C}, 5.58 \% \mathrm{H}, 2.68 \% \mathrm{~N}, 3.06 \% \mathrm{~S}$; found: $69.07 \% \mathrm{C}$, $5.67 \% \mathrm{H}, 2.74 \% \mathrm{~N}, 2.91 \% \mathrm{~S}$.

Ethyl 4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-d-glucopyranosyl-
 ($1 \rightarrow 4$)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-glucopyranoside (14)

Ethyl 4-0-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-glucopyranoside ${ }^{20}$ (430 mg , 0.75 mmol) was dried in an apparatus equipped with a septum at room temperature and 20 Pa for 10 h . The apparatus was flushed with argon ($2 \times$) and dry dichloromethane (1.7 ml) was added through the septum. After dissolution, the mixture was cooled to $0^{\circ} \mathrm{C}$ and 1 m solution of bromine in dry dichloromethane (0.8 ml) was added through the septum under stirring. Then the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 1 h . In the same apparatus the solvents were evaporated in vacuo (water pump) with exclusion of moisture. The residue was co-evaporated with toluene ($3 \times 1.5 \mathrm{ml}$) at 20 Pa , added through the septum and the residue was dissolved in dry dichloromethane (1 ml). The solution of glycosyl bromide ${ }^{20} \mathbf{1 3}$ was used for the condenzation with 1a.

A mixture of ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-glucopyranoside ${ }^{19,20}$ (1a; $266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and silver trifluoromethanesulfonate ($193 \mathrm{mg}, 0.75 \mathrm{mmol}$) was dried in an apparatus equipped with a septum at room temperature and 20 Pa for 8 h . The apparatus was washed with argon $(2 x)$ and dry dichloromethane (1 ml) was added through the septum. After dissolution, the mixture was cooled to $-45^{\circ} \mathrm{C}$ and a solution of glycosyl bromide 13 was added through the septum under stirring during 1 h . Then the mixture was stirred at $-45^{\circ} \mathrm{C}$ for another 1 h and at $-20^{\circ} \mathrm{C}$ for 30 min . Pyridine (0.5 ml) was added at $-20^{\circ} \mathrm{C}$ and after warming to room temperature the mixture was diluted with chloroform (10 ml) and
filtered. The filtrate was washed with $0.5 \mathrm{~m} \mathrm{HCl}(3 \times 3 \mathrm{ml})$, saturated aqueous sodium hydrogencarbonate ($3 \times 3 \mathrm{ml}$), water ($3 \times 3 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. Chromatography of the residue on a silica gel column (30 g) in toluene-ethyl acetate (9:1) gave 320 mg (61%) of solid compound 14; $[\alpha]_{D}+47$ (c 1.3, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table IV, ${ }^{13} \mathrm{C}$ NMR: see Table VI. For $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}$ calculated: relative molecular mass 1047.2, monoisotopic mass 1046.4. FAB MS, m/z: 877.4 [M - (OBn and EtS) $]^{+}, 1048.4[\mathrm{M}+\mathrm{H}]^{+}, 1069.4[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}$ (1047.2) calculated: $68.82 \% \mathrm{C}$, $5.58 \% \mathrm{H}, 2.68 \% \mathrm{~N}$; found: $69.09 \% \mathrm{C}, 5.64 \% \mathrm{H}, 2.67 \% \mathrm{~N}$.

Pent-4-enyl 4-O-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-D-gal actopyranosyl$(1 \rightarrow 4)-3,6$-di-O-benzyl-2-deoxy-2-phthalimido- β-d-gal actopyranoside (16a) and Pent-4-enyl 4-0-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- $\alpha-$ d-gal actopyranosyl($1 \rightarrow 4$)-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-d-galactopyranoside (16b)

Method A: Compound 10a ($112 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$), added through the septum. Silver carbonate ($320 \mathrm{mg}, 1.16 \mathrm{mmol}$), silver perchlorate ($67 \mathrm{mg}, 0.32 \mathrm{mmol}$) and molecular sieves $4 \AA$ (300 mg) were added and drying was continued at room temperature and 20 Pa for another

Table IV
${ }^{1} \mathrm{H}$ NMR parameters of compounds $\mathbf{1 2 - 1 7} \mathbf{b}^{\text {a }}$

Para- meter	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6 a}$	$\mathbf{1 6 b}$	$\mathbf{1 6 c}$	$\mathbf{1 7 a}$	$\mathbf{1 7 b}$
$\delta(\mathrm{H}-1)$	4.94 dd	5.10 m	4.88 d	4.90 d	4.93 d	5.03 d	5.03 d
$\delta(\mathrm{H}-2)$	4.11 t		4.02 dd	4.02 dd	4.05 dd	4.77 dd	4.38 dd
$\delta(\mathrm{H}-3)$	4.08 ddd	$4.14-4.19 \mathrm{~m}$	3.98 dd	4.03 dd	4.01 dd	4.08 dd	4.15 dd
$\delta(\mathrm{H}-4)$	4.05 dd		3.93 dd	3.94 dd	3.97 dd	4.32 dd	4.17 dd
$\delta(\mathrm{H}-5)$	3.65 ddd	3.34 ddd	3.60 ddd	3.64 ddd	3.64 ddd	3.53 dd	3.75 ddd
$\delta(\mathrm{H}-6 \mathrm{a})$	3.70 dd	3.38 dd	3.73 dd	3.75 dd	3.74 dd	3.02 dd	3.78 dd
$\delta(\mathrm{H}-6 \mathrm{~b})$	3.84 dd	3.52 dd	3.90 dd	3.88 dd	3.89 dd	3.14 dd	3.88 dd
$\delta\left(\mathrm{H}-\mathbf{1}^{\prime}\right)$	5.32 d	5.33	5.28 d	5.44 d	5.24 d	5.30 d	5.81 d
$\delta\left(\mathrm{H}-2^{\prime}\right)$	4.47 dd	4.27 dd	4.53 dd	4.69 dd	4.49 dd	4.76 dd	4.98 dd
$\delta\left(\mathrm{H}-\mathbf{3}^{\prime}\right)$	4.43 dd	4.77 dd	4.40 dd	5.95 dd	4.38 dd	5.61 dd	5.58 t
$\delta\left(\mathrm{H}-4^{\prime}\right)$	5.67 dd	5.15 dd	5.66 dd	5.48 dd	5.64 dd	5.88 dd	4.45 dd
$\delta\left(\mathrm{H}-5^{\prime}\right)$	3.87 ddd	3.66 ddd	3.88 ddd	4.08 ddd	3.86 dt	4.83 ddd	5.37 ddd
$\delta\left(\mathrm{H}-6 \mathrm{a}^{\prime}\right)$	3.49 dd	3.44 dd	3.49 dd	4.04 dd		3.30 dd	4.26 dd
$\delta\left(\mathrm{H}-6 \mathrm{~b}^{\prime}\right)$	3.51 dd	3.54 dd	3.51 dd	4.17 dd	3.51 d	3.38 dd	4.33 dd
$\delta\left(\mathrm{H}-1 \mathrm{a}^{\prime \prime}\right)$	-	-	3.25 ddd	3.28 ddd	3.29 ddd	3.29 ddd	3.35 ddd
$\delta\left(\mathrm{H}-1 \mathrm{~b}^{\prime \prime}\right)$	-	-	3.67 dt	3.71 dt	3.69 dt	3.50 dt	3.79 dd
$\delta\left(\mathrm{H}-2^{\prime \prime}\right)$	-	-		$1.33-1.51 \mathrm{~m}$	$1.37-1.48 \mathrm{~m}$	$1.38-1.55 \mathrm{~m}$	$1.37-1.55 \mathrm{~m}$
$\delta\left(\mathrm{H}-3^{\prime \prime}\right)$	-	-	$1.60-1.82 \mathrm{~m}$	$1.68-1.81 \mathrm{~m}$	$1.73-1.82 \mathrm{~m}$	$1.76-1.87 \mathrm{~m}$	$1.74-1.88 \mathrm{~m}$
$\delta\left(\mathrm{H}-4^{\prime \prime}\right)$	-	-	5.50 ddt	5.51 ddt	5.54 ddt	5.59 ddt	5.54 ddt
$\delta\left(\mathrm{H}-5 \mathrm{a}^{\prime \prime}\right)$	-	-	4.63 ddt	4.64 ddt	4.68 ddt	4.70 ddt	4.68 dq
$\delta\left(\mathrm{H}-5 \mathrm{~b}^{\prime \prime}\right)$	-	-	4.68 ddt	4.69 ddt	4.71 ddt	4.76 ddt	4.71 dd

Table IV
(Continued)

Para- meter	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6 a}$	$\mathbf{1 6 b}$	$\mathbf{1 6 c}$	$\mathbf{1 7 a}$	$\mathbf{1 7 b}$
$\mathrm{J}(1,2)$	10.3	b	7.9	8.1	7.8	8.5	8.6
$\mathrm{~J}(2,3)$	10.3	b	11.0	10.1	11.1	11.1	10.8
$\mathrm{~J}(3,4)$	2.6	b	3.4	2.8	2.4	2.9	2.9
$\mathrm{~J}(4,5)$	1.0	9.3	1.0	0.0	1.0	0.0	1.3
$\mathrm{~J}(5,6 \mathrm{a})$	5.5	4.0	5.9	6.0	6.1	8.6	6.0
$\mathrm{~J}(5,6 \mathrm{~b})$	6.1	1.3	5.7	5.4	5.5	6.1	5.9
$\mathrm{~J}(6 \mathrm{a}, 6 \mathrm{~b})$	9.6	11.1	10.1	10.3	10.3	9.0	9.8
$\mathrm{~J}\left(1^{\prime}, 2^{\prime}\right)$	8.1	8.4	8.4	8.4	8.4	3.3	4.7
$\mathrm{~J}\left(2^{\prime}, 3^{\prime}\right)$	11.0	10.8	11.1	11.6	11.0	9.8	7.5
$\mathrm{~J}\left(3^{\prime}, 4^{\prime}\right)$	3.2	9.0	3.4	3.4	3.4	3.1	7.9
$\mathrm{~J}\left(4^{\prime}, 5^{\prime}\right)$	1.1	9.8	0.9	0.0	0.7	0.9	3.7
$\mathrm{~J}\left(5^{\prime}, 6 a^{\prime}\right)$	6.0	2.5	6.1	6.0	6.5	5.6	7.1
$\mathrm{~J}\left(5^{\prime}, 6 \mathrm{~b}^{\prime}\right)$	7.0	4.4	7.0	6.4	6.5	7.5	4.5
$\mathrm{~J}\left(6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}\right)$	9.2	9.9	9.2	9.8	b	9.1	11.8

${ }^{\text {a }}$ Parameters of pent-4-enyl residue signed $\mathrm{H}-\mathrm{I}^{\prime \prime}$ to $\mathrm{H}-5^{\prime \prime}$, typical values of coupling constants in pent-4-enyl residue: $\mathrm{J}_{1 a^{\prime \prime}, 2 a^{\prime \prime}}=6.1, \mathrm{~J}_{1 a^{\prime \prime}, 2 b^{\prime \prime}}=7.3, \mathrm{~J}_{1 b^{\prime \prime}, 2 a^{\prime \prime}}=J_{1 b^{\prime \prime}, 2 b^{\prime \prime}}=6.1, \mathrm{~J}_{1 a^{\prime \prime}, 2 b^{\prime \prime}}=9.7, J_{3 a^{\prime \prime}, 4^{\prime \prime}}=J_{3 b^{\prime \prime}, 4^{\prime \prime}}=6.7$, $J_{3 a^{\prime \prime}, 5 a^{\prime \prime}}=J_{3 a^{\prime \prime}, 5 a^{\prime \prime}}=1.7, J_{3 a^{\prime \prime}, 5 b^{\prime \prime}}=J_{3 b^{\prime \prime}, 5 b^{\prime \prime}}=1.2, J_{4^{\prime \prime}, 5 a^{\prime \prime}}=17.1, J_{4^{\prime \prime}, 5 b^{\prime \prime}}=10.2, J_{5 a^{\prime \prime}, 5 b^{\prime \prime}}=2.1$. Additional NMR parameters and parameters of substituents: $12-\mathrm{J}_{1,3}=1.3$, arom. $\mathrm{H}: 6.56-8.10 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.25 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}$ $=12.5), 4.34 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.7), 4.40 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.49 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.52 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.7), 4.54 \mathrm{~s}(2$ $\mathrm{H}), 4.60 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.5), \mathrm{SCH}_{2} \mathrm{CH}_{3}: 2.45 \mathrm{dq}(1 \mathrm{H}, \mathrm{J}=3 \times 7.4,12.3), 2.60 \mathrm{dq}(1 \mathrm{H}, \mathrm{J}=3 \times 7.4,12.3), 1.32 \mathrm{t}$ (3 H, J = 7.3), OAc: $2.17 \mathrm{~s}(3 \mathrm{H}) ; 14$ - arom. $\mathrm{H}: 6.80-7.88 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.32 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.1), 4.43 \mathrm{~d}(1$ $\mathrm{H}, \mathrm{J}=11.8), 4.44 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.50 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.3), 4.52 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.52 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9)$, $4.60 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.1), 4.84 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.3), \mathrm{SCH}_{2} \mathrm{CH}_{3}: 2.49 \mathrm{dq}(1 \mathrm{H}, \mathrm{J}=3 \times 7.5,12.5), 2.57 \mathrm{dq}(1 \mathrm{H}, \mathrm{J}=3$ $\times 7.5,12.5), 1.09 \mathrm{t}(3 \mathrm{H}, \mathrm{J}=7.5)$, OAc: $1.92 \mathrm{~s}(3 \mathrm{H})$; $\mathbf{1 6 a}-\operatorname{arom} . \mathrm{H}: 6.52-7.80 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 3.93 \mathrm{~d}(1 \mathrm{H}$, $\mathrm{J}=12.8), 4.13 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.8), 4.27 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.0), 4.42 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.50 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.54 \mathrm{~d}$ ($1 \mathrm{H}, \mathrm{J}=11.9$), $4.57 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.60 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.0), \mathrm{OAc}: 1.92 \mathrm{~s}(3 \mathrm{H}) ; 16 b-\operatorname{arom} . \mathrm{H}: 6.63-7.75$ $\mathrm{m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.02 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.7), 4.36 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.7), 4.59 \mathrm{~s}(2 \mathrm{H}), \mathrm{OAc}: 1.87 \mathrm{~s}(3 \mathrm{H}), 2.03 \mathrm{~s}(3 \mathrm{H})$, $2.20 \mathrm{~s}(3 \mathrm{H}) ; \mathbf{1 6 c}-\operatorname{arom} . \mathrm{H}: 6.85-7.75 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.25 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.5), 4.42 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.50 \mathrm{~d}$ $(1 \mathrm{H}, \mathrm{J}=11.8), 4.55 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.57 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.58 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.5)$, OAc: $2.15 \mathrm{~s}(3 \mathrm{H})$, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$: $3.47 \mathrm{ddt}(1 \mathrm{H}, \mathrm{J}=1.2,1.2,6.2,12.8), 3.71 \mathrm{ddt}(1 \mathrm{H}, \mathrm{J}=1.4,1.4,5.8,12.8), 5.30 \mathrm{ddt}(1 \mathrm{H}, \mathrm{J}$ $=6.0,6.0,10.3,17.2$), $4.75 \mathrm{dq}(1 \mathrm{H}, \mathrm{J}=3 \times 1.5,10.3), 4.80 \mathrm{dq}(1 \mathrm{H}, \mathrm{J}=3 \times 1.6,17.2) ; 17 \mathrm{a}-\mathrm{arom} . \mathrm{H}$: $6.88-7.87 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.15 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.16 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.18 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.7), 4.32 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}$ $=11.9), 4.40 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8), 4.59 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=9.5), 4.71 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.7), 4.87 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=9.5)$, OAc: 2.06 $\mathrm{s}(3 \mathrm{H}) ; \mathbf{1 7 b}$ - arom. $\mathrm{H}: 6.56-7.82 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.06 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.3), 4.34 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.3), 4.61 \mathrm{~d}(1 \mathrm{H}$, $\mathrm{J}=11.8), 4.67 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.8)$, OAc: $2.03 \mathrm{~s}(3 \mathrm{H}), 2.06 \mathrm{~s}(3 \mathrm{H}), 2.16 \mathrm{~s}(3 \mathrm{H}) .{ }^{\mathrm{b}}$ Value not determined.

Table V
${ }^{13} \mathrm{C}$ NMR chemical shifts of compounds $\mathbf{2 a} \mathbf{- 1 1}{ }^{\text {a }}$

Compound	C-1	C-2	C-3	C-4	C-5	C-6
$\mathbf{2 a}$	81.23	54.88	78.82	79.12	77.85	68.92
$\mathbf{2 b}$	81.23	54.92	78.68	$77.88^{\text {b }}$	$77.91^{\text {b }}$	68.90
$\mathbf{3 a}$	81.54	51.64	73.58	66.05	76.09	68.01
$\mathbf{3 b}$	81.76	51.70	74.03	66.28	76.20	68.13
$\mathbf{4} \alpha$-anomer	90.40	54.66	71.39	65.52	72.84	67.30
$\mathbf{4} \beta$-anomer	78.70	56.13	72.92	65.64	77.30	67.47
$\mathbf{5 a}$	106.34	51.71	69.90	66.05	70.71	67.76
$\mathbf{5 b}$	104.96	52.95	72.25	65.30	72.52	67.56
$\mathbf{6}$	93.29	54.69	72.81	65.90	72.54	68.11
$\mathbf{7}$	94.36	51.86	72.80	65.62	73.33	67.33
$\mathbf{8}$	81.02	51.01	75.63	65.74	77.15	69.16
$\mathbf{9 a}$	98.60	53.02	73.05	66.00	72.33	68.04
$\mathbf{9 b}$	98.77	53.06	73.37	66.19	72.44	68.17
$\mathbf{1 0 a}$	98.37	52.44	75.06	65.63	73.39	69.12
$\mathbf{1 0 b}$	98.51	52.51	75.23	65.84	73.45	69.19
$\mathbf{1 1}$	98.78	52.45	c	67.55	73.87	68.80

${ }^{1}{ }^{13} \mathrm{C}$ chemical shifts of aromatic carbons from protecting groups are not given. Additional ${ }^{13} \mathrm{C}$ NMR chemical shifts of substituents: $\mathbf{2 a}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$: 74.91 t , $73.60 \mathrm{t}, \mathrm{SCH}_{2} \mathrm{CH}_{3}: 24.11$ $\mathrm{t}, 14.94 \mathrm{q}, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{O}: 38.63 \mathrm{q} ; \mathbf{2 b}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.56 \mathrm{t}, \mathrm{SCH}_{2} \mathrm{CH}_{3}: 24.14 \mathrm{t}, 14.95 \mathrm{q}$, $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{O}: 38.73 \mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 73.21 \mathrm{t}, 133.42 \mathrm{~d}, 117.81 \mathrm{t}$; $3 \mathrm{a}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.65 \mathrm{t}$, $70.96 \mathrm{t}, \mathrm{SCH}_{2} \mathrm{CH}_{3}: 24.30 \mathrm{t}, 14.88 \mathrm{q}, \mathrm{OAc}: 170.44 \mathrm{~s}, 20.95 \mathrm{q} ; \mathbf{3 b}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.63 \mathrm{t}$, $\mathrm{SCH}_{2} \mathrm{CH}_{3}: 24.31 \mathrm{t}, 14.90 \mathrm{q}, \mathrm{OAc}: 170.27 \mathrm{~s}, 20.86 \mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 70.16 \mathrm{t}, 133.91 \mathrm{~d}, 117.52 \mathrm{t}$; 4 - α-anomer - $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 71.06 \mathrm{t}, 73.66 \mathrm{t}$, OAc: 169.95 s , 23.89 q; 4 - β-anomer $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 71.22 \mathrm{t}, 73.72 \mathrm{t}$, OAc: $170.27 \mathrm{~s}, 23.89 \mathrm{q} ; 5 \mathrm{a}-\mathrm{J}_{\mathrm{C}-1, \mathrm{~F}}=228.1, \mathrm{~J}_{\mathrm{C}-2, \mathrm{~F}}=25.7, \mathrm{~J}_{\mathrm{C}-5, \mathrm{~F}}=$ $2.2, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.64 \mathrm{t}, 71.24 \mathrm{t}, \mathrm{OAc}: 170.07 \mathrm{~s}, 20.80 \mathrm{q} ; 5 \mathrm{~b}-\mathrm{J}_{\mathrm{C}-1, \mathrm{~F}}=214.3, \mathrm{~J}_{\mathrm{C}-2, \mathrm{~F}}=21.5$, $\mathrm{J}_{\mathrm{C}-3, \mathrm{~F}}=9.4, \mathrm{~J}_{\mathrm{C}-5, \mathrm{~F}}=5.0, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.74 \mathrm{t}, 71.28 \mathrm{t}, \mathrm{OAc}: 170.22 \mathrm{~s}, 20.78 \mathrm{q} ; \mathbf{6}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$: $73.70 \mathrm{t}, 71.20 \mathrm{t}$, OAc: $170.40 \mathrm{~s}, 20.91 \mathrm{q} ; 7-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.54 \mathrm{t}, 71.28 \mathrm{t}, \mathrm{OAc}: 170.34 \mathrm{~s}$, $20.87 \mathrm{q}, \mathrm{OC}(\mathrm{NH}) \mathrm{CCl}_{3}: 160.90 \mathrm{~s}, 93.21 \mathrm{~s} ; \mathbf{8}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.67 \mathrm{t}, 71.24 \mathrm{t}, \mathrm{SCH}_{2} \mathrm{CH}_{3}: 23.69 \mathrm{t}$, $14.87 \mathrm{q} ; 9 \mathrm{a}-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 68.94 \mathrm{t}, 28.41 \mathrm{t}, 29.75 \mathrm{t}, 137.71 \mathrm{~d}, 114.61 \mathrm{t}$; 9b - $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.65 \mathrm{t}, \mathrm{OAc}: 170.31 \mathrm{~s}, 20.84 \mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 68.98 \mathrm{t}$, 28.48 t , 29.78 t , 137.74 d , $114.61 \mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 70.25 \mathrm{t}$, 133.98 d , 117.41 t ; 10a - $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$: $73.68 \mathrm{t}, 71.29 \mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 68.57 \mathrm{t}, 28.48 \mathrm{t}, 29.81 \mathrm{t}, 137.85 \mathrm{~d}, 114.53 \mathrm{t}$; 10b - $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.70 \mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 68.60 \mathrm{t}, 28.54 \mathrm{t}, 29.83 \mathrm{t}, 137.87 \mathrm{~d}$, $114.54 \mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}_{=} \mathrm{CH}_{2}: 70.37 \mathrm{t}, 133.88 \mathrm{~d}, 117.86 \mathrm{t}$; $11-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.70 \mathrm{t}, 72.23 \mathrm{t}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{CH}}^{2}$: $68.80 \mathrm{t}, 28.45 \mathrm{t}, 29.80 \mathrm{t}, 137.88 \mathrm{~d}, 114.49 \mathrm{t}$, OSi $\left(\mathrm{CH}_{3}\right)_{3}: 0.57 \mathrm{q}$. ${ }^{\mathrm{b}}$ Alternative assignment of chemical shifts. ${ }^{\mathrm{C}}$ Overlapped by solvent signal.

8 h . The apparatus was flushed with argon ($2 \times$) and dry dichloromethane (5 ml) was added through the septum. The mixture was stirred at room temperature for 1 h , and a solution of glycosyl bromide 4, freshly prepared from 3a ($230 \mathrm{mg}, 0.4 \mathrm{mmol}$) and dichloromethane $(4 \mathrm{ml})$, was added at $-15{ }^{\circ} \mathrm{C}$ under stirring through the septum during 1 h and then the stirring was continued at room temperature for another 10 h . Progress of the reaction was monitored on TLC in toluene-ethyl acetate (5:1). Pyridine (1.5 ml) was added and after 1 h stirring at room temperature, the mixture was diluted with chloroform (12 ml) and filtered

Table VI

Characteristic ${ }^{13} \mathrm{C}$ NMR chemical shifts of compounds 12-17b ${ }^{\text {a }}$

Carbon	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6 a}$	$\mathbf{1 6 b}$	$\mathbf{1 6 c}$	$\mathbf{1 7 a}$	$\mathbf{1 7 b}$
1	80.18	80.77	98.02	98.15	98.24	98.04	98.50
2	50.77	54.74	52.13	52.27	52.30	51.87	52.60
3	75.92	78.82	75.32	70.25	75.50	75.66	76.18
4	73.49	76.03	74.54	75.26	74.54	69.68	73.06
5	77.14	77.67	73.58	73.60	73.75	72.72	73.30
6	69.44	69.45	69.72	69.77	69.86	66.94	69.38
$\mathbf{1}^{\prime}$	99.5	97.09	99.86	99.85	99.64	97.62	104.62
$\mathbf{2}^{\prime}$	52.94	56.24	52.80	51.14	52.82	52.65	60.81
3^{\prime}	72.72	76.87	72.69	67.81	72.79	70.68	72.74
4^{\prime}	65.74	72.73	65.70	66.52	65.81	66.77	77.96
5^{\prime}	71.67	73.42	71.57	75.26	71.69	68.19	69.03
6^{\prime}	68.00	68.25	68.14	61.38	68.18	68.13	62.57
$1^{\prime \prime}$	-	-	67.95	68.19	67.93	67.24	68.67
$2^{\prime \prime}$	-	-	28.37	28.41	28.49	29.69	28.47
$3^{\prime \prime}$	-	-	29.75	29.76	29.82	29.96	29.79
$4^{\prime \prime}$	-	-	137.96	137.91	138.03	138.08	137.87
$5^{\prime \prime}$	-	-	114.34	114.39	114.38	114.48	114.49

${ }^{a}{ }^{13} \mathrm{C}$ chemical shifts of aromatic carbons from protecting groups are not given. Additional
${ }^{13} \mathrm{C}$ NMR chemical shifts of substituents: $\mathbf{1 2 - 0 \mathrm { CH } _ { 2 } \mathrm { C } _ { 6 } \mathrm { H } _ { 5 } : 7 3 . 5 9 \mathrm { t } , 7 2 . 7 4 \mathrm { t } , 7 1 . 4 3 \mathrm { t } \text { , } 7 1 . 0 3 \mathrm { t } \text { , } , \text { , } \mathrm { t }}$, $\mathrm{SCH}_{2} \mathrm{CH}_{3}: 22.49 \mathrm{t}, 14.63 \mathrm{q}, \mathrm{OAc}: 170.59 \mathrm{~s}, 21.03 \mathrm{q} ; 14-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 74.58 \mathrm{t}, 73.90 \mathrm{t}, 73.55 \mathrm{t}$, $72.67 \mathrm{t}, \mathrm{SCH}_{2} \mathrm{CH}_{3}: 23.62 \mathrm{t}, 14.86 \mathrm{q}, \mathrm{OAc}: 169.63 \mathrm{~s}, 20.89 \mathrm{q} ; \mathbf{1 6 a}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.34 \mathrm{t}, 71.60 \mathrm{t}$, $70.93 \mathrm{t}, 68.14 \mathrm{t}, \mathrm{OAc}: 170.58 \mathrm{~s}, 20.99 \mathrm{q} ; \mathbf{1 6 b}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.47 \mathrm{t}, 71.91 \mathrm{t}, \mathrm{OAc}: 170.39 \mathrm{~s}$, $170.35 \mathrm{~s}, 169.92 \mathrm{~s}, 20.74 \mathrm{q}, 20.66 \mathrm{q}, 20.57 \mathrm{q} ; \mathbf{1 6 c}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.62 \mathrm{t}, 73.42 \mathrm{t}, 71.00 \mathrm{t}$, OAc: $170.56 \mathrm{~s}, 20.97 \mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 71.34 \mathrm{t}, 134.28 \mathrm{~d}, 117.63 \mathrm{t} ; 17 \mathrm{a}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$: $73.46 \mathrm{t}, 73.11 \mathrm{t}, 71.36 \mathrm{t}, 71.13 \mathrm{t}, \mathrm{OAc}: 170.28 \mathrm{~s}, 21.27 \mathrm{q} ; \mathbf{1 7 b}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 73.60 \mathrm{t}, 71.97 \mathrm{t}$, OAc: $170.43 \mathrm{~s}, 170.39 \mathrm{~s}, 170.31 \mathrm{~s}, 20.78 \mathrm{q}, 20.69 \mathrm{q}, 20.50 \mathrm{q}$.
through Celite. The filtrate was evaporated. The residue was separated by chromatography on a silica gel column (15 g) in toluene-ethyl acetate ($10: 1$) to give $122 \mathrm{mg}(57 \%$,) of a syrupy compound $\mathbf{1 6 a}$ and 45 mg (21\%) of a syrupy compound $\mathbf{1 6 b}$.

Method B: Compounds $\mathbf{3 a}$ ($234 \mathrm{mg}, 0.4 \mathrm{mmol}$) and 10a ($112 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$), added through the septum. Crushed molecular sieves $4 \AA(300 \mathrm{mg})$ were added and drying was continued at room temperature and 20 Pa for 8 h . The apparatus was flushed with argon $(2 \times)$ and dry dichloromethane (4 ml) was added through the septum. After dissolution, methyl triflate ($60 \mu \mathrm{l}, 0.53 \mathrm{mmol}$) was added under stirring at room temperature through the septum and the stirring was continued at the same temperature for 2 days. Progress of the reaction was monitored as described in method A. The mixture was taken between chloroform (20 ml) and saturated aqueous sodium hydrogencarbonate (10 ml) and organic layer was separated, washed with water ($2 \times 5 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was separated by a column chromatography as described in method A, to give 90 mg (42\%) of a syrupy compound 16a, 45 mg (21\%) of a syrupy compound 16b and 25 mg (22%) of starting compound 10a.

Method C: Compound 10a ($112 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$). Compound $5 \mathbf{5 b}$ ($213 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added and drying was continued at room temperature and 20 Pa for another 8 h . The apparatus was flushed with argon $(2 x)$ and the mixture was dissolved in dry diethyl ether $(6 \mathrm{ml})$ added through the septum. The obtained solution was added through the septum to a stirred mixture of titanium(IV) fluoride ($87 \mathrm{mg}, 0.7 \mathrm{mmol}$) and molecular sieves $3 \AA(1.5 \mathrm{~g}$) under argon in an apparatus equipped with the septum at $0{ }^{\circ} \mathrm{C}$. The stirring was then continued at room temperature for 18 h . Progress of the reaction was monitored as described in method A. The reaction mixture was worked up by the same procedure as is given in procedure A, to afford 51 mg (24%) of a syrupy compound $\mathbf{1 6 a}, 36 \mathrm{mg}$ (17\%) of a syrupy compound $\mathbf{1 6 b}, 31 \mathrm{mg}(15 \%)$ of a syrupy compound $5 \mathbf{5 a}, 23 \mathrm{mg}(21 \%)$ of starting compound $\mathbf{1 0 a}$ and 74 mg (35%) of starting compound $\mathbf{5 b}$.

Method D: Compound 10a ($112 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$), added through the septum. Compound $\mathbf{5 b}$ ($120 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added and the drying was continued at room temperature and 20 Pa for another 8 h . The apparatus was flushed with argon $(2 \times)$ and the mixture was dissolved in dry dichloromethane (4 ml) added through the septum. The obtained solution was added through the septum to a stirred mixture of bis(cyclopentadienyl)zirconium dichloride ($350 \mathrm{mg}, 1.2 \mathrm{mmol}$), silver perchlorate ($250 \mathrm{mg}, 1.2 \mathrm{mmol}$) and crushed molecuIar sieves $4 \AA(200 \mathrm{mg})$ in dry dichloromethane (4 ml) under argon and at $-20^{\circ} \mathrm{C}$ in a apparatus equipped with a septum. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h , and then chloroform (20 ml) and saturated aqueous sodium hydrogencarbonate (6 ml) were added. After warming to room temperature the mixture was filtered and organic layer was separated, washed with water ($2 \times 10 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was separated by a column chromatography as described in method A, to give 77 mg (36\%) of a syrupy compound $\mathbf{1 6 a}, 30 \mathrm{mg}$ (14\%) of a syrupy compound $\mathbf{1 6 b}$, $40 \mathrm{mg}(36 \%)$ of starting compound $\mathbf{1 0 a}$ and $15 \mathrm{mg}(13 \%)$ of starting compound $\mathbf{5 b}$.

Method E: Compounds $\mathbf{1 1}(126 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{5 b}$ ($213 \mathrm{mg}, 0.4 \mathrm{mmol}$) were dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$). The apparatus was flushed with argon $(2 \times)$ and dry acetonitrile (6 ml) was added through the septum. After dissolution, the mixture was cooled to $-45^{\circ} \mathrm{C}$ and trimethylsilyl trifluoro-
methanesulfonate ($10 \mu \mathrm{l}, 0.05 \mathrm{mmol}$) was added under stirring through the septum. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h and than at room temperature for 3 days. Progress of the reaction was monitored as described in method A . The mixture was filtered through Celite, taken between toluene (30 ml) and saturated aqueous sodium hydrogencarbonate $(10 \mathrm{ml})$, and organic layer was separated, washed with water ($2 \times 10 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. From the complex reaction mixture 24 mg (11\%) of a syrupy compound 16a was isolated by a column chromatography as described in method A, followed by HPLC separation on a silica gel column ($5 \mu \mathrm{~m}$) in hex-ane-ethyl acetate (3:1).

Method F: Compounds 7 ($270 \mathrm{mg}, 0.4 \mathrm{mmol}$) and 10a ($112 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$), added through the septum. Crushed molecular sieves $4 \AA$ (300 mg) were added and drying was continued at room temperature and 20 Pa for 8 h . The apparatus was flushed with argon $(2 x)$ and dry dichloromethane (5 ml) was added through the septum. After dissolution, the mixture was cooled to $-45{ }^{\circ} \mathrm{C}$ and 1 m solution of boron trifluoride etherate in dichloromethane ($100 \mu \mathrm{l}, 0.1 \mathrm{mmol}$) was added through the septum under stirring. Then the mixture was stirred at room temperature for 3 days. Progress of the reaction was monitored as described in method A. The mixture was taken between chloroform (20 ml) and saturated aqueous sodium hydrogencarbonate (10 ml), and organic layer was separated, washed with water ($2 \times 5 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was separated by a column chromatography as described in method A, to give 64 mg (30\%) of a syrupy compound 16a, 24 mg (11\%) of a syrupy compound 16b and 54 mg (48\%) of starting compound 10a.

Method G: Compounds 7 ($270 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathbf{1 0 a}$ ($112 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$), added through the septum. Crushed molecular sieves $4 \AA(300 \mathrm{mg})$ were added and drying was continued at room temperature and 20 Pa for 8 h . The apparatus was flushed with argon $(2 x)$ and dry dichloromethane (5 ml) was added through the septum. After dissolution, the mixture was cooled to $-45{ }^{\circ} \mathrm{C}$ and trimethylsilyl trifluoromethanesulfonate ($80 \mu \mathrm{l}$, 0.4 mmol) was added under stirring through the septum. The mixture was stirred at the same temperature for 12 h and then at room temperature for 3 days. Progress of the reaction was monitored as described in method A. The mixture was filtered through Celite, partioned between chloroform (20 ml) and saturated aqueous sodium hydrogencarbonate (10 ml), and organic layer was separated, washed with water ($2 \times 5 \mathrm{ml}$), dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was separated by a column chromatography as described in method A, to give 105 mg (49\%) of a syrupy compound 16a and 24 mg (11\%) of a syrupy compound $\mathbf{1 6 b}$.

Compound 16a: $[\alpha]_{D}+13$ (c 0.2, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table IV, ${ }^{13} \mathrm{C}$ NMR: see Table VI. For $\mathrm{C}_{63} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{14}$ calculated: relative molecular mass 1071.2, monoisotopic mass 1070.4. ESI MS, m/z: $1093.8[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{63} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{14}$ (1071.2) calculated: $70.64 \% \mathrm{C}, 5.83 \% \mathrm{H}$, 2.62\% N; found: $70.28 \% \mathrm{C}, 6.02 \% \mathrm{H}, 2.51 \% \mathrm{~N}$.

Compound 16b: $[\alpha]_{D}+46$ (c 0.7, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table IV, ${ }^{13} \mathrm{C}$ NMR: see Table VI. For $\mathrm{C}_{63} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{14}$ calculated: relative molecular mass 1071.2, monoisotopic mass 1070.4. ESI MS, m/z: 1093.5 [M + Na] ${ }^{+}$. For $\mathrm{C}_{63} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{14}$ (1071.2) calculated: $70.64 \% \mathrm{C}, 5.83 \% \mathrm{H}$, 2.62\% N; found: 70.32\% C, 5.91\% H, 2.49\% N.

Pent-4-enyl 4-O-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β-d-gal actopyranosyl($1 \rightarrow 4$)-3-0-allyl-6-0-benzyl-2-deoxy-2-phthalimido- β-d-galactopyranoside (17a) and Pent-4-enyl 4-O-Acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido- α-D-gal actopyranosyl($1 \rightarrow 4$)-3-0-allyl-6-0-benzyl-2-deoxy-2-phthalimido- β-d-galactopyranoside (17b)

Compound 10b ($102 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dried in an apparatus equipped with a septum by co-distillation with dry benzene ($3 \times 3 \mathrm{ml}$), added through the septum. Silver carbonate ($276 \mathrm{mg}, 1 \mathrm{mmol}$), silver perchlorate ($48 \mathrm{mg}, 0.23 \mathrm{mmol}$) and molecular sieves $4 \AA(300 \mathrm{mg}$) were added and drying was continued at room temperature and 20 Pa for another 8 h . The apparatus was flushed with argon ($2 x$) and dry dichloromethane (3 ml) was added through the septum. The mixture was stirred at room temperature for 1 h and a solution of glycosyl bromide 4, freshly prepared from $3 \mathrm{a}(173 \mathrm{mg}, 0.3 \mathrm{mmol}$), in dry dichloromethane (3 ml) was added under stirring through the septum during 1 h and the stirring was continued at room temperature for another 10 h . Progress of the reaction was monitored on TLC in toluene-ethyl acetate ($5: 1$). Pyridine (1.5 ml) was added and after 1 h stirring at room temperature, the mixture was diluted with chloroform (12 ml) and filtered through Celite. The filtrate was evaporated. Chromatography of the residue on a silica gel column (15 g) in oluene-ethyl acetate (10:1) followed by HPLC separation on a silica gel column ($5 \mu \mathrm{~m}$) in hexane-ethyl acetate (4:1) afforded 35 mg (17\%) of a syrupy compound 17a and 22 mg (11\%) of a syrupy compound $\mathbf{1 7 b}$ and 42 mg (43\%) of starting compound $\mathbf{1 0 b}$.

Compound 17a: $[\alpha]_{D}-39$ (c 0.2, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table IV, ${ }^{13} \mathrm{C}$ NMR: see Table VI. For $\mathrm{C}_{59} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{14}$ calculated: relative molecular mass 1021.1, monoisotopic mass 1020.4. ESI MS, m/z: $1043.3[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{59} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{14}$ (1021.1) calculated: $69.40 \% \mathrm{C}, 5.92 \% \mathrm{H}$, 2.74\% N; found: $69.28 \% \mathrm{C}, 6.10 \% \mathrm{H}, 2.66 \% \mathrm{~N}$.

Compound 17b: $[\alpha]_{D}+128$ (c 0.2, chloroform). ${ }^{1} \mathrm{H}$ NMR: see Table IV, ${ }^{13} \mathrm{C}$ NMR: see Table VI. For $\mathrm{C}_{59} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{14}$ calculated: relative molecular mass 1021.1, monoisotopic mass 1020.4. ESI MS, m/z: $1043.5[\mathrm{M}+\mathrm{Na}]^{+}$. For $\mathrm{C}_{59} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{14}$ (1021.1) calculated: $69.40 \% \mathrm{C}, 5.92 \% \mathrm{H}$, 2.74\% N; found: 69.33% C, $6.16 \% \mathrm{H}, 2.62 \% \mathrm{~N}$.

This work was supported by the Grant Agency of the Czech Republic (grant No. 203/00/0071), by the Ministry of Education, Youth and Sports (grant No. 1131 00001) and Research Project Z4/055/905, by the Grant Agency of the Charles University (grant No. 244/2003).

REFERENCES

1. Varki A.: Glycobiology 1993, 3, 97.
2. Dwek R. A.: Chem. Rev. 1996, 96, 683.
3. Banoub J., Boullanger P., Lafont D.: Chem. Rev. 1992, 92, 1167.
4. Aly M. R. E., Ibrahim E. S. I., El Ashry E. S. H., Schmidt R. R.: Carbohydr. Res. 2001, 331, 129.
5. Baschang G.: Tetrahedron 1989, 45, 6331.
6. Ledvina M., Zyka D., Ježek J., Trnka T., Šaman D.: Collect. Czech. Chem. Commun. 1998, 63, 577.
7. Silwanis B. A., Elsokkary R. I., Nashed M. A., Paulsen H.: J. Carbohydr. Chem. 1991, 10, 1067.
8. Sugimoto M., Fujikura K., Nunomura S., Horisaki T., Ito Y., Ogawa T.: Tetrahedron Lett. 1990, 31, 385.
9. Prabhanjan H., Kameyama A., Ishida H., Kiso M., Hasegawa A.: Carbohydr. Res. 1991, 220, 127.
10. Wilstermann M., Kononov L. O., Nilsson U., Ray A. K., Magnusson G.: J. Am. Chem. Soc. 1995, 117, 4742.
11. Lichtenthaler F. W., Immel S.: Tetrahedron: Asymmetry 1994, 5, 2045.
12. Krist P., Herkommerová-Rajnochová E., Rauvolfová J., Semeňuk T., Vavrušková P., Pavlíček J., Bezouška K., Petruš L., Křen V.: Biochem. Biophys. Res. Commun. 2001, 287, 11.
13. Stockl W. P., Weidmann H.: J. Carbohydr. Chem. 1989, 8, 169.
14. Lemieux R. U., Ratcliffe R. M.: Can. J. Chem. 1979, 57, 1244.
15. Paulsen H.: Angew. Chem., Int. Ed. Engl. 1982, 21, 155.
16. van Seeventer P. B., Corsten M. A., Sanders M. P., Kamerling J. P., Vliegenthart J. F. G.: Carbohydr. Res. 1997, 299, 171.
17. Westerlind U., Hagback P., Duk M., Norberg T.: Carbohydr. Res. 2002, 337, 1517.
18. Agoston K., Kerekgyarto J., Hajko J., Batta G., Lefeber D. J., Kamerling J. P., Vliegenthart J. F. G.: Chem. Eur. J. 2002, 8, 151.
19. Nilsson M., Norberg T.: J. Carbohydr. Chem. 1990, 9, 1.
20. Zyka D.: Ph.D. Thesis. Charles University, Prague 2000.
21. Kerekgyarto J., Vanderven J. G. M., Kamerling J. P., Liptak A., Vliegenthart J. F. G.: Carbohydr. Res. 1993, 238, 135.
22. Garegg P. J.: Adv. Carbohydr. Chem. Biochem. 1997, 52, 179.
23. Nicolaou K. C., Dolle R. E., Papahatjis D. P., Randall J. L.: J. Am. Chem. Soc. 1984, 106, 4189.
24. Schmidt R. R., Kinzy W.: Adv. Carbohydr. Chem. Biochem. 1994, 50, 21.
25. Yamazaki F., Kitajima T., Nukada T., Ito Y., Ogawa T.: Carbohydr. Res. 1990, 201, 15.
26. Hashimoto S., Hayashi M., Noyori R.: Tetrahedron Lett. 1984, 25, 1379.
27. Farkaš J., Ledvina M., Brokeš J., Ježek J., Zajíček J., Zaoral M.: Carbohydr. Res. 1987, 163, 63.
28. Ledvina M., Farkaš J., Zajíček J., Ježek J., Zaoral M.: Collect. Czech. Chem. Commun. 1989, 54, 2784.
29. Kreuzer M., Thiem J.: Carbohydr. Res. 1986, 149, 347.
30. Matsumoto T., Maeta H., Suzuki K., Tsuchihashi G.: Tetrahedron Lett. 1988, 29, 3567.
31. Suzuki K., Maeta H., Matsumoto T., Tsuchihashi G.: Tetrahedron Lett. 1988, 29, 3571.

[^0]: ${ }^{\text {a }}$ Tf, trifluoromethanesulfonyl.

[^1]: a Parameters of pent-4-enyl residue signed $\mathrm{H}-\mathbf{1}^{\prime}$ to $\mathrm{H}-5^{\prime}$, typical values of coupling constants in pent-4-enyl residue: $J_{1 a^{\prime}, 2 a^{\prime}}=6.3, J_{1 a^{\prime}, 2 b^{\prime}}=7.1, J_{1 b^{\prime}, 2 a^{\prime}}=J_{1 b^{\prime}, 2 b^{\prime}}=6.2, J_{1 a^{\prime}, 1 b^{\prime}}=9.8, J_{3 a^{\prime}, 4^{\prime}}=$ $J_{3 b^{\prime}, 4^{\prime}}=6.6, J_{3 a^{\prime}, 5 a^{\prime}}=J_{3 a^{\prime}, 5 a^{\prime}}=1.7, J_{3 a^{\prime}, 5 b^{\prime}}=J_{3 b^{\prime}, 5 b^{\prime}}=1.4, J_{4^{\prime}, 5 a^{\prime}}=17.0, J_{4^{\prime}, 5 b^{\prime}}=10.3, J_{5 a^{\prime}, 5 b^{\prime}}=1.9$. Additional NMR parameters and parameters of substituents: 9a - arom. H: 6.89-7.87 m, $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.26 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.4), 4.50 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.60 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.60 \mathrm{~d}(1 \mathrm{H}$, $\mathrm{J}=12.4$), OAc: $2.14 \mathrm{~s} ; \mathbf{9 b}$ - arom. $\mathrm{H}: 7.28-7.89 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.50 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.59 \mathrm{~d}$ $(1 \mathrm{H}, \mathrm{J}=11.9), \mathrm{OAc}: 2.14 \mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 3.80 \mathrm{ddt}(1 \mathrm{H}, \mathrm{J}=1.3,1.3,6.3,12.9), 4.06 \mathrm{ddt}$ $(1 \mathrm{H}, \mathrm{J}=1.5,1.5,5.1,12.9), 5.56$ dddd $(\mathrm{J}=5.1,6.3,10.4,17.2), 4.95 \mathrm{ddt}(\mathrm{J}=1.3,1.3,1.7$, 10.4), $5.05 \mathrm{dq}(J=3 \times 1.6,17.2)$; 10a - arom. $\mathrm{H}: 6.96-7.92 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.34 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=$ 12.3), $4.64 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.3), 4.62 \mathrm{~s}(2 \mathrm{H}) ; \mathbf{1 0 b}$ - arom. $\mathrm{H}: 7.26-7.92 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.62 \mathrm{~s}$ $(2 \mathrm{H}), \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}: 3.88$ ddt $(1 \mathrm{H}, \mathrm{J}=1.4,1.4,5.9,12.9), 4.07 \mathrm{ddt}(1 \mathrm{H}, \mathrm{J}=1.4,1.4,5.5$, 12.9), 5.65 ddt ($1 \mathrm{H}, \mathrm{J}=5.8,5.8,10.4,17.2$), $4.99 \mathrm{dq}(1 \mathrm{H}, \mathrm{J}=3 \times 1.3,10.4), 5.11 \mathrm{dq}(1 \mathrm{H}$, $\mathrm{J}=3 \times 1.5,17.2$); 11 - arom. $\mathrm{H}: 6.92-7.83 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}: 4.23 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.1), 4.56 \mathrm{~d}(1 \mathrm{H}$, $\mathrm{J}=11.9), 4.59 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=11.9), 4.64 \mathrm{~d}(1 \mathrm{H}, \mathrm{J}=12.1), \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}: 0.15 \mathrm{~s}(9 \mathrm{H}) .{ }^{\mathrm{b}}$ Value not determined.

